CCE PR
 NSR \& NSPR

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BENGALURU, 560003
ఎసో.ఎసో.ఎలో.సి. 山రిత్ష్ష, జృనా / జుల్ృ, 2022
S.S.L.C. EXAMINATION, JUNE / JULY, 2022

యూదర లుత్తరగళః
MODEL ANSWERS
దినాంళ : 27. 06. 2022]

Date: 27.06. 2022]
ఎిజ్య : ఎిజ్ఞ్గ
Subject : SCIENCE
(భౌత విజ్ఞాన, రనాయిన విజ్ఞాన ముత్తు జిఁ విజ్ఞాన / Physics, Chemistry \& Biology)

(Private Repeater / NSR \& NSPR)
(భౌతలాశ్త్రు / Physics)
(ఇంగ్లిఱద ఱూధ్యయు / English Medium)
[Max. Marks : 100

Qn. Nos.	Value Points	Total
	PART - A (PHYSICS)	
I.	Multiple choice : $2 \times 1=2$	
1.	The correct statement among the following related to the concave lens is (A) converges the light rays (B) diverges the light rays (C) forms inverted image (D) forms real image. Ans. : (B) diverges the light rays	1

Qn. Nos.	Value Points	
2.	The SI unit of resistivity is	
	(A) ohm	(B) volt
	(C) watt	(D) ohm-metre.

Ans. :
(D) ohm-metre
II. Answer the following questions :

$$
3 \times 1=3
$$

3. Calculate the power of convex lens with a focal length of +0.5 m .

Ans. :
Focal length $(f)=+0.5 \mathrm{~m}$
Power of lens $=\frac{1}{\text { focal length }}$

$$
\begin{aligned}
& P=\frac{1}{f} \\
& P=\frac{1}{0.5} \\
& P=+2 \mathrm{D}
\end{aligned}
$$

What are the reasons for occurring overload in an electric circuit ?
Ans. :
\star Accidental hike in the supply voltage
\star Connecting too many appliances to a single socket
\star When live wire and neutral wire come into direct contact.
(Any two) $\frac{1}{2}+\frac{1}{2}$
5.

What is a solar cell ?
Ans. :
The device that converts solar energy into electrical energy.
\square

Answer the following questions:
6. An electric bulb with a resistance of 50Ω is connected to 10 V battery in an electric circuit. Calculate the electric current flowing through the electric bulb and electric power of the bulb.

Ans. :

$$
\begin{aligned}
R & =50 \Omega \\
V & =10 \mathrm{~V} \\
I & =? \\
P & =? \\
V & =I R \\
I & =\frac{V}{R} \\
& =\frac{10}{50} \\
& =0 \cdot 2 \mathrm{~A}
\end{aligned}
$$

Electric current flowing through bulb is 0.2 A

$$
\begin{aligned}
& P=V I \\
& P=10 \times 0.2
\end{aligned}
$$

$$
P=2 \mathrm{~W}
$$

Power of bulb $=2$ watt $=2 \mathrm{~W}$.
7. Draw the diagram of a simple electric motor and label 'Split rings'?

Ans. :

PR/NSR \& NSPR-(C)-(100)-5502 (MA) PHY

Write any two limitations of producing electricity from wind energy.

Ans. :
i) Wind energy forms (wind mills) cannot be established everywhere.
ii) The wind speed should be higher than $15 \mathrm{~km} / \mathrm{h}$ to maintain the required speed of the turbine.
iii) Wind energy farms require large area of land.
iv) The initial cost of establishment of the farm is quite high.

$$
\text { (Any two) } \quad 1+1
$$

9. State Fleming's right hand rule.

Ans. :

Stretch the thumb, forefinger and middle finger of right hand so that they are perpendicular to each other. If the forefinger indicates the direction of the magnetic field and the thumb shows the direction of motion of conductor, then the middle finger will show the direction of induced current.
10. Draw the diagram showing the connection of three resistors in parallel in an electric circuit and label 'voltmeter'.

Ans. :

11. Write any two differences between convex mirror and concave mirror. Ans. :

Convex mirror		Concave mirror	
i)Reflecting surface is curved outward	i) Reflecting surface is curved inward		
ii)Diverges the light rays	ii)	Converges the light rays	
iii) Always produces virtual and			
erect image	iii)Always produces real and inverted image except when the object kept between P and F		

IV. Answer the following questions:

$$
3 \times 3=9
$$

12. a) State the two laws of refraction of light.
b) "The refractive index of diamond is 2.42 ." Write the meaning of this
b) "The refract $\begin{aligned} & \text { statement. }\end{aligned}$

$$
\text { (Any two) } 1+1
$$

Position of the image : At $2 F_{2}$

Nature of the image : Real and inverted

Position of the image : Beyond C
Nature of the image : read and inverted.
$\left[2+\frac{1}{2}+\frac{1}{2}\right]$

Qn. Nos.	Value Points	Total
14.	List the properties of the magnetic field due to the flow of electric current in a solenoid. What are the two methods of increasing magnetic field in a solenoid ? Ans. : $\star \quad$ The magnetic field in a current carrying solenoid is similar to that of magnetic field produced in a bar magnet.	
$\star \quad$ The magnetic field is uniform inside the solenoid. The two methods to increase magnetic field in a solenoid. i) By increasing the number of turns of the coil. 1		
ii) By increasing the current flowing through solenoid.	$\frac{1}{2}$	$\frac{1}{2}$

V.
15.

Answer the following questions :
a) Write any four uses of concave mirror.
b) An object is placed at a distance of 15 cm on the principal axis infront of a concave lens with a focal length of 10 cm . Find the image distance.

Ans. :
a) Used of concave mirror.
i) Uses in torches, search-lights
ii) Used in vehicles head lights
iii) Used as shaving mirrors
iv) The dentists used to test / examine teeth of patients
v) Used in solar furnace.
(Any four)
$4 \times \frac{1}{2}$

$\begin{aligned} & \hline \text { Qn. } \\ & \text { Nos. } \\ & \hline \end{aligned}$	Value Points	Total
16.	b) Given $f=-10 \mathrm{~cm}, u=-15 \mathrm{~cm}$ $\begin{aligned} & \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\ & \frac{-1}{10}=\frac{1}{v}+\frac{1}{15} \\ & \frac{1}{v}=-\frac{1}{10}-\frac{1}{15} \\ & \frac{1}{v}=\frac{-3-2}{30} \\ & \frac{1}{v}=\frac{-5}{30} \\ & \frac{1}{v}=\frac{-1}{6} \\ & v=-6 \mathrm{~cm} . \end{aligned}$ Image distance $=-6 \mathrm{~cm}$. a) State Joule's law of heating. Name any two devices that work on the application of this law. b) Why are the alloys like nichrome used in electrical heating devices ? OR a) State Ohm's law. In domestic electric circuit electrical appliances are not connected in series. Why ? b) Write the factors on which resistance of a conductor depends. Ans. : a) The heat produced in a resistor is i) directly proportional to the square of current for a given resistance ii) directly proportional to the resistance for a given current $\frac{1}{2}$ iii) directly proportional to the time for which the current flows through the resistor. $H=I^{2} R t \quad[1 \text { mark can be alloted for formula] }$	4

\qquad

