CCE RR
 REVISED \& UN-REVISED

B
 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003
ఎపో.ఎపో.ఎలో.సి. யరొత్టి, జలనో - 2018
S. S. L. C. EXAMINATION, JUNE, 2018

యూదరి అుత్రరగఆక
MODEL ANSWERS
దినాంళ : 23. 06. 2018]
Date: 23.06.2018]
CODE NO. : 74

Subject : ELEMENTS OF COMPUTER SCIENCE

(山ుసరాఙతికత లులా అభ్యథ్ / Regular Repeater)
[గండ్ట్రృ అంశగళు : 90
[Max. Marks : 90

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
1.	i)	Fill in the blanks with the correct symbol/word(s) by selecting from the choices given in the brackets : $10 \times 1=10$ The software which acts as an interface between the user and the system is \qquad (loader, operating system, keyboard) Ans. operating system	1
	ii)	Two parts of a program can be connected by \qquad (circle, rectangle, arrow) Ans. circle	1

Qn. Nos.	$\begin{aligned} & \text { Sub. } \\ & \text { Qn.No. } \end{aligned}$	Value Points	Marks
	iii)	A set of simple statements enclosed in a pair of braces is called a \qquad of statements. (constant, label, block of) Ans. block of	1
	iv)	\qquad statements makes the program self explanatory. (comment, sum, space) Ans. comment	1
	v)	```is a formatted output function. (printf (), scanf (), putchar ()) Ans. printf ()```	1
	vi)	The escape character used for tab setting is \qquad $(\backslash n, \backslash t, \backslash f)$ Ans. \t	1
	vii)	The bitwise AND operator is \qquad $(\&, \& \&, \%)$ 	1
	viii)	Multiple branching can be implemented using $\ldots \ldots . t a t e m e n t . ~$ (goto, switch, if...else)	1
	ix)	The variable declared inside any function is called as \qquad variable. (local, global, integer) Ans. local	1

Qn. Nos.	$\begin{aligned} & \text { Sub. } \\ & \text { Qn.No. } \end{aligned}$	Value Points	Marks
	x)	\qquad is an unconditional branching statement. (Loop, For, Goto) Ans. Goto	1
2.	a)	Define interpreters. Ans. Interpreters take instructions of the program one by one, convert it into equivalent machine language program and immediately executes it. Interpreters are easy to write and do not require large memory space in computer.	2
	b)	Write short notes on assembly language. Ans. The complicated nature of machine language programming lead to a search for simpler methods of programming. This resulted in a relatively simpler method of programming known as assembly language. Here simple English abbreviations are used instead of strings of 0 's and 1 's. For example an assembly language statement to add two numbers may look as follows : ADD A, B This assembly language statement instructs the computer to add the number in memory location denoted by A to the number in memory location B and to store the result in memory location A. The keywords are such as ADD, Sub etc.	3

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	c)	Name the system softwares and application softwares. 5 Ans. System software : i) MS-DOS ii) C-compiler iii) Basic interpreter iv) Unix, Linux Application software : i) Computerised billing system ii) Inventory packages iii) Auto CAD iv) Tally, Pay plus	$2 \times 2 \frac{1}{2}=5$
3.	a)	Define assembler. Ans. The assembly language is written using brief abbreviations and mnemonics, but the computer understands only machine language. So the assembly language program must be converted into machine language program for its execution. The program written in assembly language is called source code. This source program must be translated to its equivalent machine language program is called object code.	2

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	b)	Write the symbols for the following system flowchart: 3 i) Data preparation ii) Manual preparation iii) Video display unit. Ans. i) Data preparation ii) Manual preparation iii) Video display unit	$3 \times 1=3$
	c)	Write short notes on flowchart. Ans. A flowchart is a diagrammatic representation of an algorithm. Here different symbols are used for representing different operations. The operations are specified by packing them in appropriate symbol boxes and the flow of control is indicated by connecting them in boxes by arrows. Characteristics : i) They are easy to understand as they are diagrammatic representation ii) They are concise and precise iii) Flowchart is language free iv) Flowchart makes the programming easy.	5
4.	a)	Name the two sets of characters in C language. Ans. Two sets of characters in C language : i) Source characters ii) Execution characters.	$2 \times 1=2$

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	b)	List the rules to name a variable. Ans. i) Allowable characters are letters $a-z \& A-Z$ digits 0 - 9 and under score (_) ii) No other special character is allowed iii) The first character must be a letter or an underscore iv) Reserved words cannot be used as variable names.	3
	c)	Write short notes on data types. Ans. Data refers to any information which is to be stored in computer. For example Marks of a student, Salary of a person, Name of a person are all data. These data may be of different types. Computer allocates memory to a variable depending on the data is to be stored in the variable. So it becomes necessary to define the type of data which is to be stored in the variable while declaring it. A discussion on the different data types follows :	
5.	a)	Define statement. Ans. A statement represents a step in the sequence of operations. The program is written in a sequence of statements. The statements end in a semi-colon (;)	2

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	b)	List the different types of statements. Ans. Different types of statements : i) Null statement ii) Declaration statement iii) Assignment statement iv) Input statement v) Output statement vi) Expression statement	3
	c)	What is the necessity of comment ? Give its syntax. Ans. Comments are the statements which do not have any effect on the execution of the program as the compiler ignores them. But the use of comments increase the readability of the program and helps in documentation. Comments are enclosed between / * and * / Syntax : / * comment entry (compiler will ignore contents of comment only) * /	5
6.	a)	Identify the errors in the following statements : i) $\quad S=X 1+Y 1$ ii) $t=\frac{a \times b}{c}$ iii) $\quad 5=X+Y+Z$ Ans. i) Semicolon missing ii) Multiplication operator is improper and semicolon is missing iii) On the left hand side a constant is not allowed.	$3 \times 1=3$

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	b)	Write a C program to calculate the area of circle. ```Ans. main () { flot area; flot 1,b,h,bs,r; int choice printf ("please enter your choice; \n\n'); printf ("choice =1, to compute area of circle\n'); printf ("Enter 1"); scanf ("%d; &choice); { printf ("AREA OF CIRCLE ***\n"); printf ("enter the radius\n"); scanf ("%f", &r); area = 3.142 * r * r; printf ("area = %f\n",area);```	7
7.	a)		3

Qn. Nos.	$\begin{aligned} & \text { Sub. } \\ & \text { Qn.No. } \end{aligned}$	Value Points	Marks	
	b)	```Write a C program to find whether the given number is even or odd. Ans. main() { int n,f; printf ("\n\n Enter a number:"); scanf ("%d", &n); f = n%2; if (f==0) printf ("\n The number is even"); else printf ("\n The number is odd"); getch(); }```	7	
8.	a)	Write short notes on logical operators. Ans. These are used to combine two or more conditions. They yield a value of either true or false depending on whether the combined condition is true or false. The three logical operators are \&\& logical AND \|	logical OR \| logical NOT	3

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
	b)	Write a C program to convert binary to decimal. ```Ans. #include <stdio.h> #include <conio.h> #include <math.h> main() { int n, r, s = 0, i; clrscr(); printf ("enter the value of n"); scanf ("%d", &n); i = 0 while (n!=0 { r = n%10; s = s + r * pow (2,i); n = n/10; i++; } printf ("the decimal number is = %d\n")s); getch() }```	7

Qn. Nos.	$\begin{gathered} \text { Sub. } \\ \text { Qn.No. } \end{gathered}$	Value Points	Marks
9.	a)	Write a flowchart to calculate the area of a triangle of given base and height. Ans.	3
	b)	Write a C program to get display of odd numbers in between 1 to 20. Ans. \#include "stdio.h" main() \{ int i; clscr () ; printf ("odd numbers in between 1 to20 are\n"); for (i = 1; i <= 20; i= i+2) printf ("\%d\n",i); \}	7

