CCE RF CCE RR

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2018

S. S. L. C. EXAMINATION, MARCH/APRIL, 2018

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 26. 03. 2018]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E

CODE NO. : 81-E

Date : 26. 03. 2018]

ವಿಷಯ : ಗಣಿತ

Subject : MATHEMATICS

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಶಾಲಾ ಅಭ್ಯರ್ಥಿ & ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Fresh & Regular Repeater) (ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.		In the given Venn diagram $n(A)$ is	
		$\begin{bmatrix} U \\ A \\ 1 \\ 2 \\ 3 \\ 5 \\ 7 \\ 6 \end{bmatrix}$	
		Ans. :	
	А	3	1
2.		Sum of all the first ' n ' terms of even natural number is	
		Ans. :	
	А	n (n + 1)	1
		RF & RR-410	[Turn over

8	1	-E	;

Qn.	Ans.	Value Points	Marks
Nos.	Key		allotted
3.		A boy has 3 shirts and 2 coats. How many different pairs, a shirt	
		and a coat can he dress up with ?	
		Ans. :	
	С	6	1
4.		In a random experiment, if the occurrence of one event prevents	
		the occurrence of other event is	
		Ans. :	
	D	mutually exclusive event	1
5.		The polynomial $p(x) = x^2 - x + 1$ is divided by $(x - 2)$ then the	
		remainder is	
		Ans. :	
	В	3	1
6.		The distance between the co-ordinates of a point (p, q) from the	
		origin is	
		Ans. :	
	С	$\sqrt{p^2 + q^2}$	1
7.		The equation of a line having slope 3 and y -intercept 5 is	
		Ans. :	
	D	y = 3x + 5	1
8.		The surface area of a sphere of radius 7 cm is	
	В	616 cm^2 .	1

Qn. Nos.	Value Points	Marks allotted
II.	Answer the following : $6 \times 1 = 6$	
9.	Find the HCF of 14 and 21.	
	Ans. :	
	$14 = 2 \times 7$	
	$21 = 3 \times 7$ ¹ / ₂	
	HCF = 7 $\frac{1}{2}$	
	[Direct Answer full marks]	1
10.	The average runs scored by a batsman in 15 cricket matches is 60 and standard deviation of the runs is 15. Find the coefficient of variation of the runs scored by him.	
	Ans.: $\overline{X} = 60$	
	$\sigma = 15$	
	C.V. = $\frac{\sigma}{\overline{X}} \times 100$ C.V. = $\frac{\text{Standard deviation}}{\text{Average}} \times 100$ $\frac{1}{2}$	
	$= \frac{15}{60} \times 100 \qquad \text{OR} = \frac{15}{60} \times 100$	
	= 25. = 25 $\frac{1}{2}$	1
11.	Write the degree of the polynomial $f(x) = x^2 - 3x^3 + 2$.	
	Ans. :	
	Degree 3	1
12.	What are congruent circles ?	
	Ans.:	
	Circles having same radii OR but different centres but 1/2 1/2 1/2	1
10	5 but different centres. J same radii J 72	1
13.	If $\sin \theta = \frac{3}{13}$ then write the value of cosec θ .	
	Ans. :	
	$\operatorname{cosec} \ \theta = \frac{13}{5}$	1
	RF & RR-410	Turn over

81-E

CCE RF & RR

Qn. Nos.	Value Points	Marks allotted
14.	Write the formula used to find the total surface area of a right circular	
	cylinder.	
	Ans. :	
	$TSA = 2\pi r (r + h)$ sq.units	1
III. 15.	If $U = \{0, 1, 2, 3, 4\}$ and $A = \{1, 4\}$, $B = \{1, 3\}$ show that	
	$(A \cup B)' = A' \cap B'.$	
	Ans. :	
	$LHS = (A \cup B)'$	
	$A \cup B = \{1, 3, 4\}$	
	$(A \cup B)' = \{0, 2\}$ (i) $\frac{1}{2}$	
	$RHS = A' \cap B'$	
	$A' = \{0, 2, 3\}$	
	$B' = \{0, 2, 4\}^{-1/2}$	
	$A' \cap B' = \{0, 2\}$ (ii) $\frac{1}{2}$	
	From (i) and (ii)	
	$(A \cup B)' = A' \cap B' $ ¹ / ₂	2
16.	Find the sum of the series $3 + 7 + 11 + \dots$ to 10 terms.	
	Ans. :	
	3 + 7 + 11 10 terms	
	a = 3	
	d = 4	
	$S_n = \frac{n}{2} [2a + (n - 1)d]$ ¹ / ₂	
I		

Qn. Nos.	Value Points	Marks allotted
	$S_{10} = \frac{10}{2} [2(3) + (10 - 1)4]$ ^{1/2}	
	$=\frac{10}{2}[6+9(4)]$	
	$=\frac{10}{2}[6+36]$	
	$= 5 \times 42.$	
	$S_{10} = 210$ ¹ / ₂	2
17.	At constant pressure certain quantity of water at 24°C is heated. It	
	was observed that the rise of temperature was found to be $4^{\circ}C$ per	
	minute. Calculate the time required to rise the temperature of water to	
	100°C at sea level by using formula.	
	Ans. :	
	a = 24	
	d = 4	
	$T_n = 100$	
	n = ?	
	$T_n = a + (n-1) d$ ¹ / ₂	
	100 = 24 + (n-1) 4 ¹ / ₂	
	$100 = 24 + 4n - 4$ $\frac{1}{2}$	
	100 = 20 + 4n	
	$n = \frac{80}{4}$	
	$n = 20.$ (20 – 1) = 19 minutes or 20th minute $\frac{1}{2}$	2
	Alternate Method :	
	By taking $a = 28$ and $n = 19$	
	OR	
	Any other correct alternate method give marks.	

RF & RR-410

Qn. Nos.	Value Po	ints	Marks allotted
18.	Prove that $2 + \sqrt{5}$ is an irrational nu	mber.	
	Ans. :		
	Let us assume $2 + \sqrt{5}$ is rational		
	$2+\sqrt{5} = rac{p}{q}, p, \ q \in \mathbb{Z}, \ q \neq 0$		1/2
	$\sqrt{5} = \frac{p}{q} - 2$ $\sqrt{5} = \frac{p - 2q}{q}$		1/2
	q		
	$\Rightarrow \sqrt{5}$ is rational		1/
	but $\sqrt{5}$ is not a rational number		1/2
	This is against our assumption		
	\therefore 2 + $\sqrt{5}$ is an irrational number.		1/2 2
19.	If ${}^{n}P_{4} = 20 ({}^{n}P_{2})$ then find the value	ue of <i>n</i> .	
	Ans. :		
	${}^{n}P_{4} = 20 \; {}^{n}P_{2}$		
	n(n-1)(n-2)(n-3) = 20 n(n)	- 1)	1/2
	(n-2)(n-3) = 20 OR	$(n-2)(n-3) = 5 \times 4$	
	$n^2 - 3n - 2n + 6 = 20$	$\Rightarrow n-2=5$	
	$n^2 - 5n - 14 = 0$	n = 5 + 2	1/2
	$n^2 - 7n + 2n - 14 = 0$	$\therefore n = 7$	
	n(n-7) + 2(n-7) = 0	J	
	(n-7)(n+2) = 0		
	n - 7 = 0 or	n+2 = 0	
	n = 7	n = -2	2

(Any alternate method to be considered)

Qn. Nos.	Value Points		Marks allotted	
20.	A die numbered 1 to 6 on its faces is rolled once. Find the probabi	ility		
	of getting either an even number or multiple of '3' on its top face.			
	Ans. :			
	$S = \{1, 2, 3, 4, 5, 6\}$	$\frac{1}{2}$		
	n(S) = 6 This can also be considered			
	$A = \{2, 3, 4, 6\} \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$\frac{1}{2}$		
	$n(A) = 4$ $= \frac{3}{6} + \frac{2}{6} - \frac{1}{6}$			
	$p(A) = \frac{n(A)}{n(S)} = \frac{4}{6}$	1/2		
	$=\frac{4}{6}$ OR $\frac{2}{3}$	$\frac{1}{2}$	2	
	(Any other alternate methods give marks)			
21.	What are like surds and unlike surds ?			
	Ans. :			
	A group of surds having same order and same radicand in their			
	simplest form. $\frac{1}{2}$	- 1/2		
	Group of surds having different orders or different radicands or b	oth		
	in their simplest form. $\frac{1}{2}$	- 1⁄2	2	
22.	Rationalise the denominator and simplify : $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}.$			
	Ans. :			
	$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}$	1⁄2		
	$= \frac{(\sqrt{5} + \sqrt{3})^2}{(\sqrt{5})^2 - (\sqrt{3})^2}$	1⁄2		
	$= \frac{5+3+2\sqrt{15}}{2}$	$\frac{1}{2}$		
	$= \frac{8+2\sqrt{15}}{2}$			
	$= 4 + \sqrt{15}$.	$\frac{1}{2}$	2	
	RF & RR-410	[Turn over	

Qn. Nos.	Value Points	Marks allotted
23.	Find the quotient and the remainder when	
	$f(x) = 2x^3 - 3x^2 + 5x - 7$ is divided by $g(x) = (x - 3)$ using	т 5
	synthetic division.	
	OR	
	Find the zeros of the polynomial $p(x) = x^2 - 15x + 50$.	
	Ans. :	
	$f(x) = 2x^3 - 3x^2 + 5x - 7$	
	g(x) = x - 3	
	3 2 - 3 5 - 7	
	\downarrow 6 9 42 $_{1/2}$	
	2 3 14 35	2
	$q(x) = 2x^2 + 3x + 14$	2
	r(x) = 35. ¹ / ₂	2
	OR	
	$f(x) = x^2 - 15x + 50$	
	At zeroes of the polynomial	
	f(x) = 0	
	$x^2 - 15x + 50 = 0$	

CCE	RF	&	RR
-----	----	--------------	----

Qn. Nos.	Value Points		Marks allotted
	$x^2 - 10x - 5x + 50 = 0$	1/2	l
	x(x-10) - 5(x-10) = 0	1/2	l
	(x-10)(x-5) = 0		l
	x - 10 = 0 or $x - 5 = 0$	1/2	l
	$x = 10 \qquad \qquad x = 5$		1
	\therefore The zeroes of the polynomial are 10 and 5.	1/2	2
24.	Solve the equation $x^2 - 12x + 27 = 0$ by using formula.		
	Ans. :		
	a = 1, b = -12, c = 27		l
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1/2	
	$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(27)}}{2(1)}$		
	$x = \frac{12 \pm \sqrt{144 - 108}}{2}$	1/2	
	$x = \frac{12 \pm \sqrt{36}}{2}$		
	$x = \frac{12 \pm 6}{2}$	1⁄2	
	$x = \frac{12+6}{2}$ or $x = \frac{12-6}{2}$		
	$x = \frac{18}{2}$ or $x = \frac{6}{2}$		
	x = 9 or $x = 3$	1/2	2
	RF & RR-410	[Turn over

Qn. Nos.	Value Points	Marks allotted
25.	Draw a chord of length 6 cm in a circle of radius 5 cm. Measure and write the distance of the chord from the centre of the circle.	
	Ans.	
	Circle ¹ / ₂	
	Chord ¹ / ₂ Marking mid point of AP 1/	
	Marking mid-point of AB 72 By measuring $OC = 4$ cm $1/2$	0
	RF & RR-410	4

RF & RR-410

Qn. Nos.	Value Points		Marks allotted
	$AB^2 = AD \cdot AC$	$\frac{1}{2}$	
	= 4 × 20		
	$AB^2 = 80$ $AB = \sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5}$ cm	¹ /2	2
	(Any other alternate methods give marks) OR A X Y Y C		
	Since XY BC		
	$\Delta AXY \sim \Delta ABC$ $\frac{ar(\Delta AXY)}{ar(\Delta ABC)} = \frac{XY^2}{BC^2}$	1⁄2	
	$\frac{ar(\Delta AXY)}{ar(\Delta ABC)} = \frac{XY^2}{4XY^2} \qquad \qquad \begin{bmatrix} \because & XY = \frac{1}{2}BC \\ & 2XY = BC \end{bmatrix}$	1⁄2	
	$\frac{10}{ar\left(\Delta ABC\right)} = \frac{1}{4}$		
	$40 = ar \Delta ABC$	$\frac{1}{2}$	
	$ar \bigtriangleup XYCB = 40 - 10$		
	$= 30 \text{ cm}^2$.	1/2	2
27.	Show that, $\cot \theta \cdot \cos \theta + \sin \theta = \csc \theta$.		
	Ans.: $\cot \theta$ $\cos \theta + \sin \theta = \csc \theta$		
	LHS = $\cot \theta$, $\cos \theta$ + $\sin \theta$		
	$= \frac{\cos\theta}{\sin\theta} \cdot \cos\theta + \sin\theta$	1⁄2	
	$= \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta}$	$\frac{1}{2}$	
	$=\frac{1}{\sin\theta}$	1⁄2	
	= $\csc \theta$.	$\frac{1}{2}$	2
	(Any other alternate methods give marks)		
	RF & RR-410		

[Turn over

29. Draw the plan for the information given below : $(\text{Scale 20 m = 1 cm})$ $\boxed{\text{trans}}$ $\boxed{\text{trans}}$ $\frac{1}{\text{to} D 50 100} + 40 \text{ to B}}{100 \text{ to B}} + 100 \text{ to B}}$ $\frac{1}{\text{to} E 30 40} + 2 \text{ cm}}{100 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}}$ $60 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}}{60 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}}$ $100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}}$ $11/2$	Qn. Nos.		Value Point	s	Marks allotted
$(\text{Scale } 20 \text{ m} = 1 \text{ cm})$ $\boxed{\left \frac{1}{10} + \frac{1}{140} + \frac{1}{10} + $	29.	Draw the plan for	the information given	below :	
$\overline{\begin{array}{c c c c c c }\hline \hline & \hline$		(Scale 20 m	= 1 cm)		
140 100			Metre To C		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			140		
$\boxed{\begin{array}{c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$		To D 50	0 100		
$ \begin{array}{c cccccccccccccccccccccccccccccccc$			60	40 to B	
From A Ans: $40 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}$ $60 \text{ m} = \frac{1}{20} \times 60 = 3 \text{ cm}$ $100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ 11/2 11/2 11/2		To E 30) 40		_
Ans.: $40 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}$ $60 \text{ m} = \frac{1}{20} \times 60 = 3 \text{ cm}$ $100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ 11/2 11/2 11/2 11/2 11/2 11/2 11/2			From A		
$40 \text{ m} = \frac{1}{20} \times 40 = 2 \text{ cm}$ $60 \text{ m} = \frac{1}{20} \times 60 = 3 \text{ cm}$ $100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ $D \qquad \qquad$		Ans. :			
$60 \text{ m} = \frac{1}{20} \times 60 = 3 \text{ cm}$ $100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ U		$40 \text{ m} = \frac{1}{20} \times 40$	= 2 cm		
$100 \text{ m} = \frac{1}{20} \times 100 = 5 \text{ cm}$ $140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ $U = \frac{1}{20} =$		$60 \text{ m} = \frac{1}{20} \times 60$	= 3 cm		
$140 \text{ m} = \frac{1}{20} \times 140 = 7 \text{ cm}$ $30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ $D \qquad \qquad$		$100 \text{ m} = \frac{1}{20} \times 10$	0 = 5 cm		
$30 \text{ m} = \frac{1}{20} \times 30 = 1.5 \text{ cm}$ $50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$ $D = \frac{1}{20} \times \frac{1}{20} \times \frac{1}{20} = \frac{1}{20} \times \frac{1}{20} \times \frac{1}{20} \times \frac{1}{20} = \frac{1}{20} \times $		$140 \text{ m} = \frac{1}{20} \times 14$	0 = 7 cm		1/2
$50 \text{ m} = \frac{1}{20} \times 50 = 2.5 \text{ cm}$		$30 \text{ m} = \frac{1}{20} \times 30$	= 1.5 cm		
$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $		$50 \text{ m} = \frac{1}{20} \times 50$	= 2.5 cm		
A			$D \xrightarrow{50 \text{ m}} H$	40 m B	11/2
			A	110	

Qn. Nos.	Value Points	Marks allotted
30.	Out of 8 different bicycle companies, a student likes to choose bicycle	
	from three companies. Find out in how many ways he can choose the	
	companies to buy bicycle.	
	Ans. :	
	From 8 different bicycle companies he chooses 3 bicycle companies.	
	⁸ C ₃ ¹ / ₂	
	${}^{8}C_{3} = \frac{8P_{3}}{3!}$ ¹ / ₂	
	$= \frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ ¹ / ₂	
	= 56. $\frac{1}{2}$	2
	Alternate Method :	
	${}^{n}C_{r} = \frac{n!}{(n-r)! r !}$ ¹ / ₂	
	${}^{8}C_{3} = \frac{8!}{(8-3)! 3!}$ ¹ / ₂	
	$= \frac{8 \times 7 \times \cancel{6} \times \cancel{5} \times \cancel{4} \times \cancel{5} \times \cancel{2} \times \cancel{1}}{\cancel{5} \times \cancel{5} \times \cancel{2} \times \cancel{2}}$ ¹ / ₂	
	= 56. $\frac{1}{2}$	
IV. 31.	In a Geometric progression the sum of first three terms is 14 and the	
	sum of next three terms of it is 112. Find the Geometric progression.	
	OR IS () : 1 A :	
	If 'a' is the Arithmetic mean of b and c, 'b' is the Geometric mean of c and a, then prove that 'c' is the Harmonic mean of a and b.	
	Ans. :	
	Let the terms be a , ar , ar^2 , ar^3 , ar^4 , ar^5 .	
	$a + ar + ar^2 = 14$	
	$a(1 + r + r^2) = 14$ (i) $\frac{1}{2}$	
	$ar^3 + ar^4 + ar^5 = 112$	
	$ar^{3}(1 + r + r^{2}) = 112$ (ii) $\frac{1}{2}$	
	RF & RR-410	Turn over

Qn. Nos.	Value Points	;	Marks allotted
	Substitute (i) in (ii) $r^{3} (14) = 112 \qquad \text{OR} \qquad \frac{a}{r^{3}}$ $r^{3} = \frac{112}{14} = 8$ $r = \sqrt[3]{8} = 2 \qquad \therefore$ Substitute $r = 2$ in (i)	ivide equation (2) by (1) $\frac{r^{3}(1+r+r^{2})}{a(1+r+r^{2})} = \frac{112}{14}$ $r^{3} = 8$ $r = 2$ 1	
	$a(1+2+2^2) = 14$ a(7) = 14 a = 2	1/2	
	\therefore The terms are 2, 4, 8, 16, 32, 6	54. ¹ / ₂	
	Any other alternate methods can also be	considered.	3
	OR		
	$a = \frac{b+c}{2} \qquad \qquad b = \sqrt{ac}$		
	$b^2 = ac$	1/2	
	$a = \frac{b+c}{2}$	1/2	
	2a = b + c 2ab = b + c	ng by hin the LUC 1	
	$\frac{b}{b} = b + c$ [dividing & indiciply 2ab = b (b + c) [Multiply both	OR LHS & RHS by 'b']	
	$2ab = b^2 + bc$	1/2	
	2ab = ac + bc 2ab = c(a + b) $\frac{2ab}{a + b} = c$	1/2	
	\therefore <i>c</i> is the harmonic mean between <i>a</i> a	nd b. $\frac{1}{2}$	3

s.			v	alue Poir	its					Marks allotted
	Alternat	e method	:							
	$a = \frac{b+2}{2}$	<u>- c</u>	(i)	b	= √	ac				
				b^2	² = c	ıc				
				b	$=\frac{a}{k}$	<u>c</u>			1	
	Substitu	te $b = -\frac{b}{2}$	$\frac{ac}{b}$ in (i)		D	,				
	$a = \frac{\frac{ac}{b}}{b}$	$\frac{1}{2}$							1/2	
	$2a = \frac{a}{a}$	$\frac{c+bc}{b}$							1/2	
	2ab = a	c(a+b)							1/2	
	$\frac{2ab}{a+b} =$	с.							1/2	
32.	Marks s mathem	scored by atics is g	y 30 studen iven below. F	its of 10	oth s	standa	rd in the sc	a un cores :	it test of	
	-	Mc	urks (x)	4	8	10	12	16		
		No. of s	students (f)	12	6	1	2			
				10	0	4	3	4		
	Ans. : Assume	d mean m	nethod :	10	0	4		4		
	Ans. : Assume X	d mean m	d = X - A	fd		4 d ²		$f d^2$		
	Ans. : Assume X 4	d mean m f 13	d = X - A $- 6$			d ² 36		4 f d ² 468		
	Ans. : Assume X 4 8	d mean m f 13 6	d = X - A $- 6$ $- 2$	fd - 78 - 12		4 d ² 36 4		4 f d ² 468 24		
	Ans. : Assume X 4 8 10	d mean m f 13 6 4	d = X - A $- 6$ $- 2$ 0	fd - 78 - 12 0		4 d ² 36 4 0		4 f d ² 468 24 0		
	Ans. : Assumed X 4 8 10 12	d mean m f 13 6 4 3	d = X - A $- 6$ $- 2$ 0 2	fd - 78 - 12 0 6		4 <i>d</i> ² 36 4 0 4		4 f d ² 468 24 0 12		
	Ans. : Assume X 4 8 10 12 16	d mean m f 13 6 4 3 4	d = X - A -6 -2 0 2 6	$\begin{array}{r} fd \\ -78 \\ -12 \\ 0 \\ 6 \\ 24 \end{array}$		4 <i>d</i> ² 36 4 0 4 36		4 f d ² 468 24 0 12 144		

RF & RR-410

1. s.				Value Points				Marks allotted
	Variance	$=\frac{\sum f}{n}$	$\frac{d^2}{dt} - \left(\frac{\sum f d}{n}\right)$	$\left(\frac{1}{2}\right)^2$			1⁄2	
		$=\frac{648}{30}$	$\frac{3}{2} - \left(\frac{60}{30}\right)^2$				1⁄2	
		= 21.6	$5 - 2^2$					
		= 17.6	ō.				1/2	3
	Direct Me	ethod :	I					
	X	<i>X</i> ²	f	fX	$f X^2$			
	4	16	13	52	208			
	8	64	6	48	384			
	10	100	4	40	400			
	12	144	3	36	432			
	16	256	4	64	1024			
	Variance	$= \frac{\sum f L}{n}$ $= \frac{244}{2}$	$\frac{X^2}{n} - \left(\frac{\sum f X}{n}\right)$	$\left(\frac{2}{2}\right)^2$			1/2 1/2	
		30 = 81.6 = 17.6	$5 - 8^2$)			1/2	3
	Actual m	ean meth	nod :				72	0
	X	f	fX	$d = X - \overline{X}$	d^2	$f d^2$		
	4	13	52	- 4	16	208		
	8	6	48	0	0	0		
	10	4	40	2	4	16		
	12	3	36	4	16	48		
	16	4	64	8	64	256		
		<i>n</i> = 30	$\sum fX = 240$)	Σ j	$fd^2 = 528$	1/2	

CCE	RF	&	RR
-----	----	--------------	----

Qn. Nos.	Value Points						Marks allotted	
	$\overline{X} = \frac{\sum f}{n}$ $= \frac{24}{30}$ Variance	$\frac{0}{0} = 8$ $= \frac{\sum f}{n}$	$\frac{d^2}{d^2} = \frac{528}{30}$ = 17.6				1 1⁄2 1	3
	Step devi	iation Me	thod :					
	X	f	$d = \frac{X-A}{C}$	f d	d^2	$f d^2$		
	4	13	- 3	- 39	9	117		
	8	6	- 1	- 6	1	6		
	10	4	0	0	0	0		
	12	3	1	3	1	3		
	16	4	3	12	9	36		
		n = 30			Σ	$fd^2 = 162$	1	
	A = 10 S.D. =	$\frac{\sum f d^2}{n}$	$C = 2$ $-\left(\frac{\sum f d}{n}\right)^2 \times$	С			1/2	
	$= \sqrt{\frac{162}{30} - \left(\frac{30}{30}\right)^2} \times 2 \qquad \qquad \text{OR}$ $= \sqrt{\frac{162}{30} - \left(\frac{30}{30}\right)^2} \times 2 \qquad \qquad \text{Variance} = \frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2 \times C^2$						< C ² ¹ / ₂	
	$= \sqrt{5 \cdot 4}$ $= \sqrt{4 \cdot 4}$ $= 2 \cdot 1 \times 2$	-1 × 2 ×2		$= \frac{1}{-1}$ = (= 4	$\frac{.62}{30} - \left(\frac{3}{3} + \frac{.62}{.62} + .$	$\left(\frac{0}{0}\right)^2 \times 4$	1⁄2	
	= 4·2 ∴ Var	riance o	$b^2 = (4 \cdot 2)^2 = 1$	= 1 17.6.	7.6		1/2	3

RF & RR-410

Qn. Nos.	Value Points	Marks allotted
33.	If <i>p</i> and <i>q</i> are the roots of the equation $x^2 - 3x + 2 = 0$, find the value of $\frac{1}{p} - \frac{1}{q}$.	
	OR	
	A dealer sells an article for Rs. 16 and loses as much per cent as the	
	cost price of the article. Find the cost price of the article.	
	Ans. :	
	a = 1 $b = -3$ $c = 2$	
	$p+q = \frac{-b}{a} = \frac{-(-3)}{1} = 3$ ¹ / ₂	
	$pq = \frac{c}{a} = \frac{2}{1} = 2$ ¹ / ₂	
	$\frac{1}{p} - \frac{1}{q} = \frac{q - p}{pq} $ ¹ / ₂	
	$= \pm \frac{\sqrt{(p+q)^2 - 4pq}}{pq} $ ¹ / ₂	
	$= \pm \frac{\sqrt{3^2 - 4(2)}}{2}$	
	$= \pm \frac{\sqrt{9-8}}{2}$ ¹ / ₂	
	$= \pm \frac{1}{2} \qquad \qquad \frac{1}{2}$	3
	$\frac{1}{p} - \frac{1}{q} = +\frac{1}{2}$ or $-\frac{1}{2}$	
	(Any alternate methods give marks)	
	OR	
	C.P. = x	
	S.P. = 10 OR $r = 16$ r $r = 16$	
	Loss = $x \%$ = $\frac{x}{100} \times x = \frac{x}{100}$ $\begin{pmatrix} x - 10 \\ x \end{bmatrix} = \frac{x}{100}$ $\frac{1}{2}$	
	$S.P. = C.P loss$ $100x - 1600 = x^2$ $\frac{1}{2}$	
	$16 = x - \frac{x^2}{100}$	
	$1600 = 100x - x^2$	
	RF & RR-410	

Qn. Nos.	Value Points	Marks allotted
	$x^2 - 100x + 1600 = 0$ ¹ / ₂	
	$x^2 - 80x - 20x + 1600 = 0$	
	x(x-80) - 20(x-80) = 0	
	(x-80)(x-20) = 0	
	x - 80 = 0 or $x - 20 = 0$	
	x = 80 $x = 20$ 1	
	\therefore Cost price is Rs. 80 or Rs. 20. $\frac{1}{2}$	3
34.	Prove that, "If two circles touch each other externally, their centres and the point of contact are collinear."	
	Ans.:	
	Data: A and B are the centres of touching circles, P is the point of contact. $\frac{1}{2}$	
	To prove : A, P and B are collinear. $\frac{1}{2}$	
	Construction : Draw the tangent XY at P. $\frac{1}{2}$	
	<i>Proof</i> : In the figure,	
	tangent $\frac{1}{2}$	
	APX + BPX = 90 + 90 by adding (i) and (ii)	
	$APB = 180^{\circ} ABP is a straight line 1/2$	
	A, P and B are collinear.	3

RF & RR-410

Qn. Nos.	Value Poir	nts	Marks allotted			
35.	If $7 \sin^2 \theta + 3 \cos^2 \theta = 4$ and ' θ ' is ac	sute then show that $\cot \theta = \sqrt{3}$.				
	OR					
	The angle of elevation of an aircraft from a point on horizontal ground is found to be 30°. The angle of elevation of same aircraft after 24 seconds which is moving horizontally to the ground is found to be 60°. If the height of the aircraft from the ground is $3600\sqrt{3}$ metre. Find the velocity of the aircraft.					
	Ans.: $4 \sin^2 \theta + 3 \sin^2 \theta + 3 \cos^2 \theta = 4$ $4 \sin^2 \theta + 3 (\sin^2 \theta + \cos^2 \theta) = 4$	Alternate Method : $7 \sin^2 \theta + 3 \cos^2 \theta = 4$ $7 \sin^2 \theta + 3 [1 - \sin^2 \theta] = 4$				
	$4 \sin^2 \theta + 3 (1) = 4$ $4 \sin^2 \theta = 4 - 3$	$7 \sin^{2} \theta + 3 - 3 \sin^{2} \theta = 4$ $4 \sin^{2} \theta = 1$ $\frac{1}{2}$				
	$\sin^2 \theta = \frac{1}{4}$	$\sin^2\theta = \frac{1}{4}$				
	$\sin \theta = \frac{1}{2}$	$\sin \theta = \frac{1}{2} \qquad \qquad \frac{1}{2}$				
	$\therefore \theta = 30^{\circ}$	$\cos^2\theta = 1 - \sin^2\theta \qquad \frac{1}{2}$				
	$\therefore \cot \theta = \sqrt{3}.$	$\cos \theta = \sqrt{1 - \sin^2 \theta} \qquad \frac{1}{2}$				
	Alternate methods can also be	$=\sqrt{1-\frac{1}{4}}$				
	considered. OR PA	$=\frac{\sqrt{3}}{2}$	3			
		$\therefore \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$				
	RF & RR	-410				

[Turn over

Qn. Nos.	Value Points	Marks allotted
	In ABC , $ABC = 90^{\circ}$	
	$\tan \theta = \frac{AB}{BC}$	
	$\tan 30^\circ = \frac{3600\sqrt{3}}{BC}$ ¹ / ₂	
	$\frac{1}{\sqrt{3}} = \frac{3600\sqrt{3}}{BC}$	
	$BC = 3600\sqrt{3} \cdot \sqrt{3}$ ¹ / ₂	
	BC = 10800 m	
	In PCQ , $PQC = 90^{\circ}$	
	$\tan \theta = \frac{PQ}{CQ}$	
	$\tan 60^\circ = \frac{3600\sqrt{3}}{CQ}$ ¹ / ₂	
	$\sqrt{3} = \frac{3600\sqrt{3}}{CQ}$	
	$CQ = 3600 \text{ m}$ $\frac{1}{2}$	
	$\therefore BQ = BC - CQ = 10800 - 3600$	
	$BQ = 7200 \text{ m}$ $\frac{1}{2}$	
	$\therefore \text{Velocity} = \frac{\text{distance}}{\text{time}} = \frac{d}{t}$	
	$=\frac{7200}{24}$	
	= 300 m/s $\frac{1}{2}$	3
	OR	
	(Any Alternate method)	

Qn. Nos.	Value Points	Marks allotted
36.	A solid is in the form of a cone mounted on a right circular cylinder, both having same radii as shown in the figure. The radius of the base and height of the cone are 7 cm and 9 cm respectively. If the total height of the solid is 30 cm, find the volume of the solid. A = A = A = A = A = A = A = A = A = A =	anotteu
	$r = 7 \mathrm{cm}$ Let $h_1 = 21 \mathrm{cm}$ for cylinder $r = 7 \mathrm{cm}$ $h_2 = 9 \mathrm{cm}$ for cone	
	Volume of solid = Volume of cylinder + Volume of cone $ = \pi r^{2}h_{1} + \frac{1}{3}\pi r^{2}h_{2} $ $ = \pi r^{2} (h_{1} + \frac{1}{3}h_{2}) $ $ = \frac{22}{7} \times 7^{2} (21 + \frac{1}{3} \times 9^{-3}) $ $ = \frac{22}{7} \times 7(24) $ $ = \frac{22}{7} \times 7(24) $	
	= 3696 c.c. $\frac{1}{2}$ Direct substitution of h_1 and h_2 value can also be considered. OR	3

CCE	RF	85	RR
-----	----	----	----

Qn.	 Value Points	Marks
Nos.	Value Foliits	allotted
	$2\pi r_1 = 18 \text{ cm}$ $2\pi r_2 = 6 \text{ cm}$ $l = 4 \text{ cm}$ $\frac{1}{2}$	
	$r_1 = \frac{18}{2\pi} = \frac{9}{\pi}$ cm $r_2 = \frac{6}{2\pi} = \frac{3}{\pi}$ cm	
	Curved Surface Area = $\pi (r_1 + r_2) l$ 1	
	$= \pi \left(\frac{9}{4} + \frac{3}{4} \right) 4 \qquad 1^{\frac{1}{2}}$	
	$(\pi \pi)$	3
	- +o cm .) OR	5
	$CSA = l [\pi r_1 + \pi r_2]$	
	$= 4 [9+3] = 4 [12] = 48 \text{ cm}^2$	
V. 37.	Solve the equation $x^2 - x - 2 = 0$ graphically.	
	Ans. :	
	Let $y = 0$	
	$x^2 - x - 2 = 0 \text{given}$	
	$\therefore y = x^2 - x - 2$	
	x 0 1 -1 2 3 -2	
	y -2 -2 0 0 4 4	
	1) $x = 0$ 4) $x = 2$	
	$y = 0^2 - 0 - 2 \qquad \qquad y = 2^2 - 2 - 2$	
	$y = -2 \qquad \qquad y = 0$	
	2) $x = 1$ 5) $x = 3$	
	$y = 1^2 - 1 - 2$ $y = 3^2 - 3 - 2$	
	$y = -2 \qquad \qquad y = 9-5$	
	y = 4 3) $x = -1$ 6) $x = -3$	
	$y = (-1)^2 - (-1) - 2 \qquad y = (-3)^2 - (-3) - 2$	
	= 1 + 1 - 2 $y = 9 + 3 - 2$	
	y = 0 = 10	
	7) $x = -2$	
	$y = (-2)^2 - (-2) - 2$	
	y = 4 + 2 - 2	
	y = 4	
	RF & RR-410	Turn over

Roots of the equation are 2 or -1

RF & RR-410

CCE RI	F & RR	29		81-E
Qn. Nos.		Value Points		Marks allotted
			1⁄2	
	Data To pro	: In $\triangle ABC$, $DE \mid \mid BC$ ove: $\frac{AD}{BD} = \frac{AE}{CE}$	1⁄2	
	Const	truction : Join DC and EB Draw $EL \perp AB$ and $DN \perp AC$.	$\frac{1}{2}$	
	Proof	$\frac{\text{Area of } \Delta \text{ ADE}}{\text{Area of } \Delta \text{ BDE}} = \frac{\frac{1}{2} \times \text{AD} \times \text{EL}}{\frac{1}{2} \times \text{BD} \times \text{EL}} \left[\because A = \frac{1}{2} \text{ bh} \right]$	1⁄2	
		$\frac{\Delta ADE}{\Delta BDE} = \frac{AD}{BD} \qquad \dots (i)$ $\frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta CDE} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times EC \times DN}$	1⁄2	
	⇒	$\frac{\Delta ADE}{\Delta CDE} = \frac{AE}{EC}$ $\frac{AD}{BD} = \frac{AE}{CE}$ $(\because Area \ \Delta BDE = area$ of \(\Delta CDE\) and \(Axiom-1\) $)$	1⁄2	4
	I	RF & RR-410	۱ ']	Turn over

Qn. Nos.	Value Points a		
40.	A vertical tree is broken by the wind at a height of 6 metre from its foot		
	and its top touches the ground at a distance of 8 metre from the foot of		
	the tree. Calculate the distance between the top of the tree before		
	breaking and the point at which tip of the tree touches the ground,		
	after it breaks.		
	OR		
	In $\triangle ABC$, AD is drawn perpendicular to BC . If $BD : CD = 3 : 1$, then prove that $BC^2 = 2(AB^2 - AC^2)$.		
	Ans.: Ans.: $A = \begin{bmatrix} A \\ B \\ B \\ C \\ B \\ M \\ E \end{bmatrix}$ Figure – 1 In the figure,		
	Let AC represents the tree h .		
	B is the point of break $BC = 6$ m		
	E is the top of the tree touches the ground $CE = 8 m$		
	AE is the distance between the top of the tree before break and after the break.		
	In BCE , $BCE = 90^{\circ}$ $\frac{1}{2}$		
	$BE^{2} = BC^{2} + CE^{2}$ $BE^{2} = 6^{2} + 8^{2}$ ^{1/2}		
	$BE^2 = 36 + 64$		
	$BE^{2} = 100$ $BE = \sqrt{100} = 10 \text{ m}$ ¹ / ₂		
	BE = AB = 10 m		
	(Any other alternate method give mrks)		

CCE	RF	&	RR
-----	----	--------------	----

Marks will be given for any alternate method.

RF & RR-410
