CCE PR
 REVISED \& UN-REVISED

D
 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

ఎసో.ఎసో.ఎలో.సి. జరల్ట్సి, జంనో - 2018
S. S. L. C. EXAMINATION, JUNE, 2018

యూదరి లుత్రరగళ
MODEL ANSWERS

దినృంళ : 21. 06. 2018]

Date: 21.06.2018] Code no. : 81-E

ఎిజ్జయ : గగణిత
Subject : MATHEMATICS

(ఇంగ్లిఱో భాఱాంతర / English Version)

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.		A and B are two sets, such that $n(A)=37, n(B)=26$ and	
		$n(A \cup B)=51$; then $n(A \cap B)$ is	
(A) 12	(B) 63		
(C) 14	(D) 25		
(A)Ans. : 12			

Qn. Nos.	Ans. Key	Value Points	Marks allotted
2.	(C)	Geometric mean between $\frac{1}{2}$ and $\frac{1}{8}$ is	1
		(A) 16 (B) $\frac{1}{16}$	
		(C) $\frac{1}{4}$ (D) 4	
		Ans. : $\frac{1}{4}$	
3.		HCF of any two prime numbers is (A) a prime number (B) a composite number (C) an odd number (D) an even number	
	(C)	Ans.: an odd number	

4.

(A) 0
(B) -10
(C) -18
(D) 18

Ans. :
(D) 18 .

In $\triangle A B C, \mid A B C=90^{\circ}, B D \perp A C$ if $B D=8 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$ then the length of $C D$ is

(A) 16 cm
(B) 4 cm
(C) 64 cm
(D) 12 cm

Ans. :
(A) 16 cm

Qn. Nos.	Ans. Key	Value Points	Marks allotted	
6.		$\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}$	where ' θ ' is acute, is equal to	
		(B) $\cot \theta$		
(A) $\sec \theta$	(D) $\operatorname{cosec} \theta$			
(B) $\tan \theta$				
Ans. :		1		

7.
8.

(C) $(3,5)$

Formula used to find the surface area of a sphere whose radius ' r ' units is
(A) πr^{2}
(B) $2 \pi r^{2}$
(C) $3 \pi r^{2}$
(D) $4 \pi r^{2}$

Ans. :
(D) $4 \pi r^{2}$.
Qn.
II.

Answer the following : allotted
9. A boy has 2 pants and 4 shirts. How many different pairs of a pant and a shirt can he dress up with ?

Ans. :

Number of ways of pairing a pant and a shirt $=2 \times 4=8$

Ans. :
Yield of Ragi $=\frac{100}{3600} \times \frac{10 \not 0}{360}$ $1 / 2$

Qn.	Value Points	Marks Nos.

12. If $(x+3)$ is one of the factor of $f(x)=x^{2}+5 x+6$, find the other factor.

Ans. :
Method 1: Factor method

$$
\begin{aligned}
& x^{2}+5 x+6 \\
& =x^{2}+3 x+2 x+6 \\
& =x(x+3)+2(x+3) \\
& =(x+3)(x+2)
\end{aligned}
$$

The other factor is $(x+2)$

Division method

$2 x y / 6$
$2 x+6$
$\frac{(-) \quad(-)}{0}$

The other factor is $(x+2)$
What are concentric circles ?
Ans. :
Circles having the same centre but different radii are called concentric circles.
14. Two straight lines are perpendicular to each other. If the slope of one line is $\frac{1}{\sqrt{3}}$, find the slope of the other line.

Ans. :

$$
\begin{align*}
& m_{1} m_{2}=-1 \\
& \frac{1}{\sqrt{3}} \times m_{2}=-1 \\
& \therefore \quad m_{2}=-\sqrt{3}
\end{align*}
$$

Slope of the other line $=-\sqrt{3}$.

$$
=x(x+3)+2(x+3) \quad 1 / 2
$$

1

1

Qn.	Value Points	Marks Nos.

III. 15.

If $A=\{1,2,3\}$ and $B=\{2,3,4,5\}$ are the subsets of $U=\{1,2,3,4,5,6,7,8\}$, verify $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$. Ans. :
$A \cap B=\{2,3\}$
$(A \cap B)^{\prime}=U-(A \cap B)$

$$
=\{1,4,5,6,7,8\}
$$

$1 / 2$
$A^{\prime}=\{4,5,6,7,8\}$
$B^{1}=\{1,6,7,8\}$
$A^{\prime} \cup B^{\prime}=\{1,4,5,6,7,8\}$
From (i) and (ii)

$$
(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
$$

Find the sum of infinite terms of the geometric series $2+\frac{2}{3}+\frac{2}{9}+\ldots .$. .

Ans. :

$$
\begin{aligned}
a=2, & \quad r=\frac{1}{3}, \quad S_{\infty}=? \\
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{2}{1-\frac{1}{3}} \\
& =\frac{2}{\frac{3-1}{3}} \\
& =\frac{2}{\frac{2}{3}} \\
& =2 \times \frac{3}{2} \\
& =3
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

Ans. :
Let us assume $2+\sqrt{3}$ is a rational number.
$\Rightarrow \quad 2+\sqrt{3}=\frac{p}{q}$ where $p, q \in z, q \neq 0$
$\Rightarrow \quad \sqrt{3}=\frac{p-2 q}{q}$
$\Rightarrow \quad \sqrt{3}$ is a rational number
$\because \quad \frac{p-2 q}{q}$ is rational.
But $\sqrt{3}$ is not a rational number. This leads to a contradiction. $1 / 2$
$\therefore \quad$ Our assumption that $2+\sqrt{3}$ is a rational number is wrong.
$\therefore \quad 2+\sqrt{3}$ is an irrational number.
18. Find the number of diagonals that can be drawn in an octagon. Ans. :

An octagon has 8 vertices $\quad \therefore \quad n=8$
$\therefore \quad$ Total number of sides and diagonals $={ }^{8} C_{2}$

$$
{ }^{n} C_{2}=\frac{n(n-1)}{2} \Rightarrow{ }^{8} C_{2}=\frac{\mathscr{8}(8-1)}{2}
$$

$$
=4 \times 7
$$

$=28$

28 lines includes 8 sides.
$\therefore \quad$ Number of diagonals $=28-8$

$$
=20
$$

Qn.

Nos.

Value Points
Alternate method:
Number of diagonals in a polygon of n sides $=\frac{n(n-3)}{2}$

Alternate method:
Number of diagonals in a polygon of n sides $=\frac{n(n-3)}{2}$
In an octagon $n=8$
$\therefore \quad$ Number of diagonals $=\frac{4(8-3)}{2}$
$=4 \times 5$
$=20$
$1 / 2$
2
Any other correct alternate method may be given marks.
19. Find the sum of all two digit natural numbers which are divisible by 5

Ans. :

Two-digit numbers which are divisible by $5=10,15,20, \ldots 95$
Sum of all two-digit numbers $=10+15+20+\ldots+95$

$$
a=10, \quad d=5, \quad T_{n}=95
$$

$\therefore \quad T_{n}=a+(n-1) d$
$95=10+(n-1) 5$
$(n-1)=\frac{85}{5}$
$(n-1)=17$
$\therefore \quad n=18$

Method 1 :
Sum of n natural numbers $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
S_{18} & =\frac{18}{2}[2 \times 10+(18-1) 5] \\
& =9(20+85) \\
& =9 \times 105 \\
S_{18} & =945
\end{aligned}
$$

OR

PR (D)-60008

Qn. Nos.	Value Points		Marks allotted
	$\begin{aligned} & n=18, \quad a=10, \quad l=95 \\ & \therefore \quad S_{n}=\frac{n(a+l)}{2} \\ & \\ & \\ & \quad S_{18}=\frac{918(10+95)}{2}=9 \times 105=945 . \end{aligned}$	1	
	Alternate method: $=5(2+3+4+\ldots+19)$	$1 / 2$	
	$=5(\Sigma 19-1)$	$1 / 2$	
	$=5(190-1)$	$1 / 2$	
	$=5 \times 189=945$.	$1 / 2$	2

20. Find how many 4 digit numbers can be formed by using the digits 1 , $2,3,4,5$ without repetition ? How many of these are less than 2000 ?

OR

If $2\left({ }^{n} P_{2}\right)+50={ }^{2 n} P_{2}$, find the value of n.
Ans. :
Number of 4-digit numbers $={ }^{5} P_{4}=5 \times 4 \times 3 \times 2$

$$
=120
$$

4-digit numbers which are less than 2000

Thousand's place	Hundred's place	Ten's place	Unit place
${ }^{1} P_{1}$	${ }^{4} P_{1}$	${ }^{3} P_{1}$	${ }^{2} P_{1}$

$=1 \times 4 \times 3 \times 2$
= 24 numbers.
OR

Value Points	Marks allotted

$=1 \times 4 \times 3 \times 2$

$$
\begin{aligned}
& 2\left({ }^{n} P_{2}\right)+50={ }^{2 n} P_{2} \\
& 2 n(n-1)+50=2 n(2 n-1) \\
& 2 n^{2}-22 n+50=4 n^{2}-2 n \\
& 4 n^{2}-2 n^{2}=50 \\
& 2 n^{2}=50 \\
& n^{2}=25 \\
& \therefore \quad n=5
\end{aligned}
$$

OR

Two unbiased dice whose faces are numbered 1 to 6 are rolled once. Find the probability of getting a sum equal to 7 on their top faces.

Ans. :

Total number of possible outcomes $=6 \times 6=36$

$$
\therefore n(s)=36 \quad 1 / 2
$$

Event of getting a sum equal to $7=A=\left\{\begin{array}{l}(1,6)(2,5)(3,4) \\ (4,3)(5,2)(6,1)\end{array}\right\}$

$$
\begin{aligned}
n(A) & =6 \\
\text { Probability of getting the event } A=P(A) & =\frac{n(A)}{n(S)} \\
& =\frac{6}{36} \\
& =\frac{1}{6}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

22. Rationalise the denominator and simplify :

$$
\frac{3 \sqrt{2}}{\sqrt{5}-\sqrt{2}}
$$

Ans. :

Rationalising factor of $\sqrt{5}-\sqrt{2}$ is $\sqrt{5}+\sqrt{2}$

$$
\begin{aligned}
& =\frac{3 \sqrt{2}}{\sqrt{5}-\sqrt{2}} \times \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}} \\
& =\frac{3 \sqrt{2}(\sqrt{5}+\sqrt{2})}{(\sqrt{5})^{2}-(\sqrt{2})^{2}} \\
& =\frac{3 \sqrt{10}+3(2)}{5-2} \\
& =\frac{\not(\sqrt{10}+2)}{3} \\
& =\sqrt{10}+2 .
\end{aligned}
$$

Simplify $(\sqrt{75}-\sqrt{45})(\sqrt{20}+\sqrt{12})$.

Ans. :
$(\sqrt{75}-\sqrt{45})(\sqrt{20}+\sqrt{12})$
$=(\sqrt{25 \times 3}-\sqrt{9 \times 5})(\sqrt{4 \times 5}+\sqrt{4 \times 3})$
$=(5 \sqrt{3}-3 \sqrt{5})(2 \sqrt{5}+2 \sqrt{3})$
$=5 \sqrt{3}(2 \sqrt{5}+2 \sqrt{3})-3 \sqrt{5}(2 \sqrt{5}+2 \sqrt{3})$
$=10 \sqrt{15}+30-30-6 \sqrt{15}$
$=4 \sqrt{15}$.
PR (D)-60008

Qn. Nos.	Value Points	Marks allotted

24. Find the quotient and remainder by using synthetic division :

$$
\left(3 x^{3}-2 x^{2}+7 x-5\right) \div(x-3)
$$

OR

Verify whether $(x-2)$ is a factor of $f(x)=x^{3}-3 x^{2}+6 x-20$ by using factor theorem.

Ans. :

1
$\therefore \quad$ Quotient $=3 x^{2}+7 x+28 \quad 1 / 2$
Remainder $=79$.

OR

Let $f(x)=x^{3}-3 x^{2}+6 x-20$

If $(x-2)$ is a factor of $f(x)$,
then $f(2)=0$
Now $f(2)=2^{3}-3(2)^{2}+6(2)-20$

$$
=8-12+12-20
$$

$$
=-12
$$

$\therefore f(2) \neq 0 \quad 1 / 2$
$\therefore \quad x-2$ is not a factor of $x^{3}-3 x^{2}+6 x-20$. $1 / 2$

Qn. Nos.	Value Points	Marks allotted

Ans. :
In $\triangle A B C, D E \| B C$

$$
\begin{array}{rlr}
\therefore & \frac{A D}{D B} & =\frac{A E}{E C} \\
& & \\
\frac{2}{5} & =\frac{4}{E C} & \\
& & \\
& & \\
\therefore & & \\
\therefore & & 1 / 2 \\
\hline A C & =A E+E C & 1 / 2 \\
& & \\
& & 4+10 \\
& & 14 \mathrm{~cm} .
\end{array}
$$

Alternate method:
In $\triangle A B C, D E \| B C$

$$
\begin{array}{llr}
\therefore & \frac{A D}{A B}=\frac{A E}{A C} & \text { Cor. BPT } \\
& \frac{2}{2+5}=\frac{4}{A C} & 1 / 2 \\
\therefore & A C=\frac{7 \times 4^{2}}{2} & 1 / 2 \\
& =14 \mathrm{~cm} . & 1 / 2
\end{array}
$$

Qn. Nos.	Value Points	Marks allotted

26. Draw a circle of radius 4.5 cm and a chord $P Q$ of length 7 cm in it Construct a tangent at P.

Ans. :

$\begin{array}{lr}\text { Circle - } & 1 / 2 \\ \text { Chord }- & 1 / 2 \\ \text { Tangent }-\quad 1\end{array}$
Find the distance between the co-ordinates of the points (2, 4) and $(8,12)$ by using distance formula.

Ans. :
Coordinates of

$$
\left(\begin{array}{ll}
x_{1} & y_{1}
\end{array}\right)
$$

$$
\text { Point } \left.A=\quad \begin{array}{ll}
2, & 4
\end{array}\right)
$$

Point $B=\quad(8, \quad 12)$

Qn. Nos.	Value Points		Marks allotted
	Distance between the points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $1 / 2$ $=\sqrt{(8-2)^{2}+(12-4)^{2}}$ $=\sqrt{6^{2}+8^{2}}$ $1 / 2$ $=\sqrt{36+64}$ $=\sqrt{100}$ $1 / 2$ 2	$=10$.	

In a hockey match team ' A ' scored one goal less than twice the number of goals scored by team ' B '. If the product of the number of goals scored by both the teams is 15 , find the number of goals scored by each team.

Ans. :
Let the goals scored by team A be x and goals scored by team B be y.

$$
\therefore \quad x=(2 y-1)
$$

Product of the goals scored by both teams $=15$

$$
\begin{aligned}
& x y=15 \\
& (2 y-1) y=15
\end{aligned}
$$

$(2)(-15)=-\widehat{-6}^{-30}$
$2 y^{2}-6 y+5 y-15=0$
$2 y(y-3)+5(y-3)=0$
$(y-3)(2 y+5)=0$
$\therefore \quad y=3$
If $y=3$, then $x=2 \times 3-1=6-1=5$
$\therefore \quad$ Goals scored by team $A=5$
Goals scored by team $B=3$.

2

Qn.	Value Points	Marks Nos.

29. In the given $\triangle A B C$, ' θ ' is acute. Write the values of the following trigonometric ratios related to θ :
(a) $\sin \theta$
(b) $\cos \theta$
(c) $\operatorname{cosec} \theta$
(d) $\sec \theta$.

Ans. :
a) $\quad \sin \theta=\frac{\mathrm{Opp}}{\mathrm{Hyp}}=\frac{B C}{A C}=\frac{1}{2}$
b) $\quad \cos \theta=\frac{\text { Adj }}{\mathrm{Hyp}}=\frac{A B}{A C}=\frac{\sqrt{3}}{2}$
c) $\operatorname{cosec} \theta=\frac{1}{\sin \theta}=2$
d) $\sec \theta=\frac{1}{\cos \theta}=\frac{2}{\sqrt{3}}$.

Direct answers may be given marks.

Qn. Nos.	Value Points		
30.	Draw a plan by using the information given below : (Scale 20 metres $=1 \mathrm{~cm}$)		
		Metre to C	
		140	
	80 to D	90	
		60	60 to B
	30 to E	20	
		From A	

Ans. :
$20 \mathrm{~m}=\frac{20}{20}=1 \mathrm{~cm}$
$60 \mathrm{~m}=\frac{60}{20}=3 \mathrm{~cm}$
$90 \mathrm{~m}=\frac{90}{20}=4.5 \mathrm{~cm}$
$140 \mathrm{~m}=\frac{140}{20}=7 \mathrm{~cm}$
$60 \mathrm{~m}=\frac{60}{20}=3 \mathrm{~cm}$
$80 \mathrm{~m}=\frac{80}{20}=4 \mathrm{~cm}$
$30 \mathrm{~m}=\frac{30}{20}=1.5 \mathrm{~cm}$

$1^{1 / 2}$
2

PR (D)-60008

Qn. Nos.	Value Points	Marks allotted

31.

If $P=\{1,2,3,4\}, Q=\{2,3,4,5,6\}$ are the subsets of $U=\{1,2,3,4,5,6,7,8,9,10\}$, then draw Venn diagram to represent $(P \cup Q)^{\prime}$.

Ans. :

$(P \cup Q)^{\prime}$
32. Write the formula used to find the following :
(a) Sum of first ' n ' natural numbers
(b) Harmonic mean between a and $b(a>b)$.

Ans. :
a) $\quad \sum n=\frac{n(n+1)}{2}$
b) Harmonic mean $(H)=\frac{2 a b}{a+b}$.
33. Write the values of the following :
(a) $\quad{ }^{100} P_{0}$
(b) ${ }^{10} C_{1}$.

Ans. :
a) $\quad{ }^{100} P_{0}=1$
b) ${ }^{10} C_{1}=10$

| Qn.
 Nos. | Value Points | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34. | Draw a pie chart to represent the survey carried out in the class
 regarding places of visit for excursion and the number of students who
 opted each place. | | |
| | | | |

Ans. :

Places	No. of students	Central angle
Mysuru	14	$\frac{14}{-40} \times 360=126^{\circ}$
Vijayapura	6	54°
Gokorna	2	18°
Chitradurga	18	162°
	40	

$$
\begin{array}{ll}
\text { Calculation - } & 1 / 2 \\
\text { Pie chart }- & 11 / 2
\end{array}
$$

2
Find the product of $\sqrt[3]{2}$ and $\sqrt[4]{3}$.

Ans. :

LCM of the order of surds $=12$

$$
\begin{aligned}
& \therefore \quad \sqrt[3]{2} \Rightarrow \sqrt[{4 \times \sqrt[3]{2^{4}}}]{ }=\sqrt[12]{16} \\
& \therefore \quad \begin{array}{l}
\sqrt[4]{3} \Rightarrow \sqrt[3]{2} \times \sqrt[4]{3}
\end{array} \\
& \therefore \sqrt[12]{3^{3}} \\
& \\
& =\sqrt[12]{16} \times \sqrt[12]{16 \times 27} \\
& \\
&
\end{aligned}
$$

For any other alternative method give marks.

Determine the nature of the roots of the equation $2 x^{2}-5 x-1=0$.

Ans. :

$$
\begin{array}{lll}
a=2, \quad b=-5, \quad c=-1 & 1 / 2 \\
\therefore \quad \Delta & =b^{2}-4 a c \\
& =(-5)^{2}-4(2)(-1) & \\
& =25+8 & \\
& =33 \\
& & \\
\therefore & \Delta>0, \quad \text { Roots are real and distinct. } & 1 / 2 \\
& & 1 / 2
\end{array}
$$

Qn. Nos.	Value Points	Marks allotted

37. In Rhombus $A B C D$, prove that $4 A B^{2}=A C^{2}+B D^{2}$.

Ans. :
In $\triangle A O B, A \hat{O} B=90^{\circ}$
$\therefore \quad A B^{2}=A O^{2}+B O^{2}$
But $A O=\frac{1}{2} A C, \quad B O=\frac{1}{2} B D$
$\therefore \quad A B^{2}=\left(\frac{1}{2} A C\right)^{2}+\left(\frac{1}{2} B D\right)^{2}$

$$
=\frac{A C^{2}}{4}+\frac{B D^{2}}{4}
$$

$$
=\frac{A C^{2}+B D^{2}}{4}
$$

$\therefore \quad 4 A B^{2}=A C^{2}+B D^{2}$.
Any correct alternate method may be given marks.
38.

Find the remainder when $P(x)=x^{3}+3 x^{2}-5 x+8$ is divided by ($x-3$) by remainder theorem.

Ans. :
By remainder theorem, the required remainder is $P(3)$
$\therefore \quad P(3)=(3)^{3}+3(3)^{2}-5(3)+8$
$=27+27-15+8$
$=62-15$
$=47$
$\therefore \quad$ The remainder $P(3)=47$.

Qn. Nos.	Value Points	Marks allotted

39. Find the distance between origin and the point ($-8,15$).

Ans. :
Distance between origin and $(x, y)=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
\text { Here } & (x, y)=(-8,15) \\
\therefore \quad d= & \sqrt{(-8)^{2}+15^{2}} \\
= & \sqrt{64+225}
\end{aligned}
$$

$$
=\sqrt{289} \quad 1 / 2
$$

$$
d=17 \text { units. } \quad 1 / 2
$$

If $\cos \theta=\frac{5}{13}$, find the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$.

Ans. :
Given $\cos \theta=\frac{5}{13}=\frac{\text { Adj }}{\mathrm{Hyp}}=\frac{A B}{A C}$
In $\triangle A B C, A \hat{B} C=90^{\circ}$

$$
\begin{aligned}
\therefore \quad B C^{2} & =A C^{2}-A B^{2} \\
\therefore \quad B C & =\sqrt{13^{2}-5^{2}} \\
& =\sqrt{169-25}=\sqrt{144}=12
\end{aligned}
$$

$$
\therefore \quad \sin \theta=\frac{12}{13} \text {. }
$$

Figure -
Finding opp. side - $\quad 1 / 2$
$\left.\begin{array}{c|cc|c}\hline \begin{array}{c}\text { Qn. } \\ \text { Nos. }\end{array} & & \text { Value Points } & \begin{array}{c}\text { Marks } \\ \text { allotted }\end{array} \\ \hline & \therefore \quad \frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta} & =\frac{\frac{12}{13}+\frac{5}{13}}{\frac{12}{13}-\frac{5}{13}} & 1\end{array}\right]$
IV. 41.

Any other alternate method may be given marks.
In a harmonic progression 5th term is $\frac{1}{12}$ and 11 th term is $\frac{1}{15}$. Find its 25 th term.

OR

If the third term of a geometric progression is 12 and its sixth term is 96 , find the sum of first 9 terms.

Ans. :
$T_{5}=\frac{1}{12}$ and $T_{11}=\frac{1}{15}$
Reciprocals of HP are in AP.
$\therefore \quad a+4 d=12$
... (i)
$a+10 d=15$

By solving (i) and (ii)

$$
\begin{gathered}
\not d+10 d=15 \\
(-) \not d+4 d=12 \\
\frac{(-)}{6 d=3} \\
\therefore \quad d=\frac{3}{6}=\frac{1}{2} \\
\text { If } d=\frac{1}{2}, \text { then } a+\not \subset\left(\frac{1}{22}\right)=12 \\
a+2=12 \\
\therefore \quad a=10
\end{gathered}
$$

Value Points	
If a	$=10$ and $d=\frac{1}{2}$ then
T_{n}	$=\frac{1}{a+(n-1) d}$
T_{25}	$=\frac{1}{10+(25-1) \frac{1}{2}}$
	$=\frac{1}{10+24 \times \frac{1}{2}}$
$T_{25}=\frac{1}{22}$	

Alternate method:
The corresponding T_{5} and T_{11} of AP are

$$
\begin{aligned}
T_{5} & =12 \text { and } T_{11}=15 \\
\therefore \quad d & =\frac{T_{p}-T_{q}}{p-q} \\
& =\frac{T_{5}-T_{11}}{5-11} \\
& =\frac{12-15}{5-11}=\frac{-3}{-6}=\frac{1}{2}
\end{aligned}
$$

If $d=\frac{1}{2}$ then $a+4\left(\frac{1}{2}\right)=12$

$$
\begin{array}{ll}
& a+2=12 \\
\therefore \quad & a=10
\end{array}
$$

If $a=10$ and $d=\frac{1}{2}$

$$
T_{n}=\frac{1}{a+(n-1) d}
$$

Qn.	Value Points	Marks Nos.

If $r=2$ then $a(2)^{2}=12$

$$
4 a=12
$$

$$
\therefore \quad a=3
$$

$$
1 / 2
$$

If $a=3$ and $r=2, n=9$ then

$$
\begin{aligned}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& S_{9}=\frac{3\left(2^{9}-1\right)}{2-1}
\end{aligned}
$$

$$
=3(512-1)
$$

$$
=3 \times 511
$$

$$
S_{9}=1533
$$

$1 / 2$
3

$$
\begin{aligned}
& T_{3}=12 \quad \therefore \quad a r^{2}=12 \quad \ldots \text { (i) } \\
& T_{6}=96 \quad \therefore \quad a r^{5}=96 \quad \text {... (ii) } \\
& \left.\therefore \quad \frac{\angle r^{5}}{\not \partial r^{2}}=\frac{9 \sigma^{8}}{12} \quad \text { OR } \quad \begin{array}{l}
a r^{2}\left(r^{3}\right)=96 \\
12 r^{3}=96 \\
r^{3}=8
\end{array}\right\} \\
& r^{3}=8 \quad \therefore \quad r=2 \quad 1 / 2
\end{aligned}
$$

| Qn.
 Nos. | Value Points |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42. | Calculate the variance of the following data : |
| \qquadClass-interval $0-4$ $5-9$ $10-14$ $15-19$ $20-24$
 Frequency (f) 1 2 5 4 3 | |

Ans. :
i) Step deviation method:

A $=12$						
C.I.	f	x	$d=\frac{x-A}{i}$	d^{2}	$f d$	$f d^{2}$
$0-4$	1	2	-2	4	-2	4
$5-9$	2	7	-1	1	-2	2
$10-14$	5	12	0	0	0	0
$15-19$	4	17	1	1	4	4
$20-24$	3	22	2	4	6	12

$$
\begin{array}{rlr}
N=15 & \sum f d=6 & \sum f d^{2}=22 \\
\text { Variance }=\sigma^{2} & =\sum \frac{f d^{2}}{N}-\left(\frac{\sum f d}{N}\right)^{2} \times i^{2} & 1 / 2 \\
& =\frac{22}{15}-\left(\frac{6}{15}\right)^{2} \times 5^{2} & \\
& =(1.466-0.16) \times 25 & 1 / 2 \\
& =1.306 \times 25 & 1 / 2
\end{array}
$$

Value Points	Marks
allotted	

Direct method:

C.I.	f	x	$f x$	x^{2}	$f x^{2}$
$0-4$	1	2	2	4	4
$5-9$	2	7	14	49	98
$10-14$	5	12	60	144	720
$15-19$	4	17	68	289	1156
$20-24$	3	22	66	484	1452

$N=15$
$\sum f x=210$
$\sum f x^{2}=3430$
Variance $=\sigma^{2}=\sum \frac{f x^{2}}{N}-\left(\frac{\sum f x}{N}\right)^{2}$
$=\frac{3430}{15}-\left(\frac{210}{15}\right)^{2}$

$$
=228 \cdot 6-196
$$

$$
=32 \cdot 6
$$

Assumed mean method:
Assumed mean $A=12$

C.I.	f	x	$d=x-A$	$f d$	d^{2}	$f d^{2}$
$0-4$	1	2	-10	-10	100	100
$5-9$	2	7	-5	-10	25	50
$10-14$	5	12	0	0	0	0
$15-19$	4	17	5	20	25	100
$20-24$	3	22	10	30	100	300

Qn.

Nos.

Value Points	
Variance $=\sigma^{2}$	$=\sum \frac{f d^{2}}{N}-\left(\frac{\sum f d}{N}\right)^{2}$
	$=\frac{550}{15}-\left(\frac{30}{15}\right)^{2}$
	$=36.6-4$
	$=32.6$

Actual mean method:

C.I.	f	x	$f x$	$d=x-\bar{x}$	d^{2}	$f d^{2}$
$0-4$	1	2	2	-12	144	144
$5-9$	2	7	14	-7	49	98
$10-14$	5	12	60	-2	4	20
$15-19$	4	17	68	3	9	36
$20-24$	3	22	66	8	64	192

$$
N=15 \quad \sum f x=210
$$

$\sum f d^{2}=490$
Mean $=\bar{x}=\frac{\sum f x}{N}$

$$
=\frac{210}{15}=14
$$

Variance $=\sigma^{2}=\frac{\sum f d^{2}}{N}$

$$
=\frac{490}{15}
$$

$$
=32 \cdot 6
$$

Qn. Nos.	Value Points	Marks allotted

If one root of the equation $x^{2}+p x+q=0$ is four times the other, prove that $4 p^{2}-25 q=0$.

Ans. :
$(2 x+3)(3 x-2)+2=0$
$2 x(3 x-2)+3(3 x-2)+2=0$
$6 x^{2}-4 x+9 x-6+2=0$
$6 x^{2}+5 x-4=0$
where $a=6, b=5 . c=-4$
$\therefore \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-5 \pm \sqrt{5^{2}-4 \times 6 \times(-4)}}{2 \times 6}$
$=\frac{-5 \pm \sqrt{25+96}}{12}$
$=\frac{-5 \pm \sqrt{121}}{12}$
$=\frac{-5 \pm 11}{12}$
$=\frac{-5+11}{12} \quad$ or $\quad \frac{-5-11}{12}$
$=\frac{6}{12} \quad$ or $\quad \frac{-16}{12}$
$x=\frac{1}{2} \quad$ or $\quad \frac{-4}{3}$.
OR

Qn. Nos.	Value Points
	$x^{2}+p x+q=0$ where $a=1, \quad b=p, \quad c=q$

If m and n are the roots

$$
\text { then } m=4 n \quad 1 / 2
$$

\therefore Sum of the roots $=m+n=\frac{-b}{a}$

$$
\begin{align*}
& 4 n+n=\frac{-p}{1} \\
& 5 n=-p \\
\therefore \quad & n=\frac{-p}{5} \tag{i}
\end{align*}
$$

Product of the roots $=m n=\frac{c}{a}$

$$
\begin{align*}
& 4 n \times n=\frac{q}{1} \\
& 4 n^{2}=q \tag{ii}
\end{align*}
$$

Substituting (i) in (ii)

$$
\text { Then } \begin{gather*}
4\left(\frac{-p}{5}\right)^{2}=q \\
\frac{4 p^{2}}{25}=q \\
4 p^{2}=25 q \\
4 p^{2}-25 q=0
\end{gather*}
$$

Qn.	Value Points	Marks Nos.

44.

Prove that "The tangents drawn from an external point to a circle are equal".

Ans. :

Data: $\quad A$ is the centre of the circle.
B is an external point. $B P$ and $B Q$ are the tangents.

To prove: $B P=B Q$
Construction: $A P, A Q$ and $A B$ are joined.
Proof: In $\triangle A P B$ and $\triangle A Q B$,
$A \hat{P} B=A \hat{Q} B \quad$ Radius drawn at the point of contact is perpendicular to the tangent.
hyp. $A B=$ hyp $A B$ Common side
$A P=A Q \quad$ Radii of the same circle.
$\therefore \quad \triangle A P B \cong \triangle A Q B \quad$ RHS theorem.
$\therefore \quad B P=B Q$
CPCT.
3
PR (D)-60008

Qn. Nos.	Value Points	Marks allotted

In $\triangle A B C, D E \| B C$. If $3 D E=2 B C$ and the area of $\triangle A B C$ is $81 \mathrm{~cm}^{2}$, show that the area of $\triangle A D E$ is $36 \mathrm{~cm}^{2}$.

Ans. :
In $\triangle A B C, A B=A C$
$\therefore \quad \hat{B}=\hat{C} \quad$ angles opposite to equal sides $\quad 1 / 2$
In $\triangle B M P$ and $\triangle C N P$

	$B \hat{M} P=P \hat{N} C$	right angles	$1 / 2$
	$M \hat{B} P=N \hat{C} P$	equal angles	$1 / 2$
\therefore	$\Delta M B P \sim \Delta N C P$	equiangular triangles	$1 / 2$
\therefore	$\frac{M B}{N C}=\frac{B P}{C P}=\frac{M P}{N P}$	$A A-$ criteria	$1 / 2$
\therefore	$M B \cdot C P=B P . N C$.		$1 / 2$

OR
PR (D)-60008

Qn. Nos.	Value Points	Marks allotted

46. Prove that $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$.
OR

From the top of a building 20 m high, the angle of elevation of the top of a vertical pole is 30° and the angle of depression of the foot of the same pole is 60°. Find the height of the pole.

Ans. :

$$
\begin{aligned}
& =\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right) \\
& =\left(\frac{\sin A+\cos A-1}{\sin A}\right)\left(\frac{\cos A+\sin A+1}{\cos A}\right) \\
& =\frac{(\sin A+\cos A)^{2}-1^{2}}{\sin A \cos A} \\
& =\frac{\sin ^{2} A+\cos ^{2} A+2 \sin A \cos A-1}{\sin A \cos A}
\end{aligned}
$$

Qn.

In $\triangle B E D, \quad D \hat{B} E=30^{\circ}$

$$
\begin{array}{ll}
\therefore \quad & \tan 30^{\circ}=\frac{D E}{B E} \\
& \frac{1}{\sqrt{3}}=\frac{x-20}{B E} \\
\therefore \quad & B E=\sqrt{3}(x-20)
\end{array}
$$

In $\triangle A B C, \quad A \hat{C} B=60^{\circ}$

$$
\begin{array}{ll}
\therefore & \tan 60^{\circ}=\frac{A B}{A C} \\
& \sqrt{3}=\frac{20}{\sqrt{3}(x-20)}
\end{array}
$$

Value Points	Marks
allotted	

Height of the pole $=26.6 \mathrm{~m}$ (approximate $)$.
3
Solve the equation $x^{2}+x-6=0$ graphically.
Ans. :
$x^{2}+x-6=0$
$\therefore \quad y=x^{2}+x-6$

x	0	1	2	3	-1	-2	-3	-4
y	-6	-4	0	6	-6	-4	0	6

Table -
Drawing parabola - 1
Identifying roots - 1
Alternate method:

$$
x^{2}+x-6=0 \quad \therefore \quad y=x^{2}, y=6-x
$$

$y=x^{2}$							
x	0	1	2	3	-1	-2	-3
y	0	1	4	9	1	4	9

$y=6-x$

x	0	1	2	3	-1	-2	-3
y	6	5	4	3	7	8	9

Table -
Drawing parabola -
Identifying roots -

Qn. Nos.	Value Points	Marks allotted

PR (D)-60008

Qn. Nos.	Value Points	Marks allotted

Qn. Nos.	Value Points	Marks allotted

48. Construct a direct common tangent to two circles of radii 4 cm and 2 cm whose centres are 9 cm apart. Measure and write the length of the direct common tangent.

Ans. :
$R=4 \mathrm{~cm}, \quad r=2 \mathrm{~cm} \quad \therefore \quad R-r=4-2=2 \mathrm{~cm}$
$d=9 \mathrm{~cm}$

Length of the tangent $E F=8.8 \mathrm{~cm}$

PR (D)-60008

Qn. Nos.	Value Points	Marks allotted	
	Drawing $A B$ and marking mid-point -	1	
	Drawing $C_{1}, C_{2}, C_{3}-$	$1 \frac{1}{2}$	1

Prove that "In a right angled triangle, square on the hypotenuse is equal to sum of the squares on the other two sides".

Ans. :

Figure -	$1 / 2$
Data -	$1 / 2$
To prove -	$1 / 2$
Construction -	$1 / 2$

Data: In $\triangle A B C, A \hat{B} C=90^{\circ}$
To prove: $\quad A C^{2}=A B^{2}+B C^{2}$
Construction: $B D \perp A C$ drawn.
Proof: \quad Comparing $\triangle A B C$ and $\triangle A B D$

Statement
$A \hat{B C}=A \hat{D} B$
$B \hat{A} C=\hat{B A D}$
$\therefore \quad \triangle B A C \sim \Delta D A B$
$\therefore \quad \frac{B A}{D A}=\frac{A C}{A B}$
$\therefore \quad A B^{2}=A C . A D$

Reason
Right angles common angle

Equiangular triangles $\quad 1 / 2$
$A A$ - criteria
. (i)

Qn. Nos.	Value Points	Marks allotted

50.

A solid is in the shape of a cylinder with a cone attached at one end and a hemisphere attached to the other end as shown in the figure. All of them are of the same radius 7 cm . If the total length of the solid is 61 cm and height of the cylinder is 30 cm , calculate the cost of painting the outer surface of the solid at the rate of Rs. 10 per $100 \mathrm{~cm}^{2}$.

OR

PR (D)-60008

Ans. :
Height of the cone $=$ Total height of the solid - (height of the cylinder + radius of the hemisphere)
$=61-(30+7)$
$=61-37=24 \mathrm{~cm}$.
But 7, 24, 25 are Pythagorian triplets
$\therefore \quad$ Slant height of the cone $=l=25 \mathrm{~cm}$.
TSA of the solid $=$ LSA of the cone + LSA of the cylinder

+ LSA of the hemisphere
$=\pi r l+2 \pi r h+2 \pi r^{2}$
$=\pi r(l+2 h+2 r)$
$=\frac{22}{7} \times \nrightarrow(25+2 \times 30+2 \times 7)$ sq.cm. $\quad 1 / 2$
$=22 \times 99$
$=2178$ sq.cm.
Cost of painting at the rate of Rs. 10 per $100 \mathrm{~cm}^{2}=\frac{2178 \times 10}{190}$ $=$ Rs. $217 \cdot 8$

PR (D)-60008

Qn. Nos.	Value Points		Marks allotted
	$\begin{aligned} & =\frac{\pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}+\frac{2}{3} \pi r_{2}^{3}} \\ & =\frac{\pi\left(6^{2} \times 15\right)}{\frac{1}{\partial} \times A \times 3^{\frac{2}{3}}(4+6)} \\ & =\frac{-36^{18} \times 15^{3}}{\not 3 \times 1 \not \partial 2} \\ & =18 . \end{aligned}$	$1^{1 / 2}$ 1 $1 / 2$	4

