CCE RR REVISED

A

 KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560003

S.S.L.C. EXAMINATION, SEPTEMBER, 2020

యూదరి అృత్ృరగళః

MODEL ANSWERS

ఎిజయ : గొణిత్ర

Subject : MATHEMATICS

(山్లnరాదతిఃత లాలా అభ్యథీร / Regular Repeater)
(ఇంగ్లిజో భాషాంతర / English Version)
[Max. Marks : 80

| Qn.
 Nos. | Ans.
 Key | Value Points | Marks
 allotted |
| ---: | :---: | :--- | :--- | :---: |
| 5. | | The lines represented by
 are,
 (A) intersecting lines | |
| (B) parallel lines | | | |
| (C) coincident lines | | | |
| (D) perpendicular lines to each other. | | | |
| Ans. : | | | |
| (B) | parallel lines | | |

6.
7.
8.

(D) 25

If $P(A)=\frac{2}{3}$, then $P(\bar{A})$ is
(A) $\frac{1}{3}$
(B) 3
(C) 1
(D) $\frac{3}{2}$.
-

Ans. :
(A) $\frac{1}{3}$
(B) 5
(A) -25
(D) 25 .

Ans. :

3
The surface area of a sphere of radius 7 cm is
(A) $154 \mathrm{~cm}^{2}$
(B) $616 \mathrm{~cm}^{3}$
(C) $616 \mathrm{~cm}^{2}$
(D) $308 \mathrm{~cm}^{2}$.

Ans. :
(C) $616 \mathrm{~cm}^{2}$

Qn. Nos.	Value Points	Marks allotted
II. 9.	Answer the following : $8 \times 1=8$ In two linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, if $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, then write the number of solutions these pair of equations have. Ans. : Exactly one solution	1

Alternative answer :
Unique
10. If $\cos \theta=\frac{24}{25}$, then write the value of $\sec \theta$.

Ans. :
$\sec \theta=\frac{25}{24}$

In the figure, O is the centre of a circle, $A C$ is a diameter.
If $\left\lfloor A C B=50^{\circ}\right.$, then find the measure of $\lfloor B A C$.

Ans. :
$A C$ is diameter $\therefore \quad A B C=90^{\circ}$

$$
\begin{aligned}
\therefore \quad\lfloor A C B+\lfloor A B C & \boxed{B A C}=180^{\circ} \\
& 50^{\circ}+90^{\circ}+\left\lfloor B A C=180^{\circ}\right. \\
& \left\lfloor B A C=180^{\circ}-140^{\circ}=40^{\circ}\right.
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted
12.	Write the formula to find the total surface area of a right-circular cone whose circular base radius is ' r ' and slant height is ' l '.	
Ans. :	Total surface area of cone $=\pi r(r+l)$	1

13. Find the H.C.F. of the smallest prime number and the smallest composite number.

Ans. :

Smallest prime number $=2$
Smallest composite number = 4
$\therefore \quad$ H.C.F. of $(2,4)$ is 2
If $P(x)=2 x^{3}+3 x^{2}-11 x+6$, then find the value of $P(1)$.
Ans. :
$P(x)=2 x^{3}+3 x^{2}-11 x+6$
$P(1)=2(1)^{3}+3(1)^{2}-11(1)+6$
$P(1)=2+3-11+6$
$P(1)=0$
15. If one root of the equation $(x+4)(x+3)=0$ is -4 , then find the another root of the equation.

Ans. :
$(x+4)(x+3)=0$
If one root is - 4
$\therefore \quad$ Another root is $x+3=0$

$$
x=-3
$$

$$
1 / 2
$$

Qn. Nos.	Value Points	Marks allotted

III.

Answer the following questions :
$\cos A=\sqrt{1-\sin ^{2} A}$
$\cos A=\sqrt{1-0}$
$\cos A=\sqrt{1}=1$.
17. Solve the following pair of linear equations :

$$
\begin{aligned}
& 2 x+3 y=11 \\
& 2 x-4 y=-24
\end{aligned}
$$

Ans. :
Elimination method :
$2 x+3 y=11$
(i) - (ii)
$2 x-4 y=-24$

$$
\begin{equation*}
(-) \quad(+) \quad(+) \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
7 y & =35 \\
y & =\frac{35}{7} \\
y & =5
\end{aligned}
$$

Substitute $y=5$ in (i)

$$
\begin{aligned}
& 2 x+3 y=11 \\
& 2 x+3(5)=11 \\
& 2 x=11-15 \\
& 2 x=-4 \\
& x=-\frac{4}{2} \\
& x=-2
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

Substitute equation (iii) in equation (ii)

$$
\begin{aligned}
& 2 x-4 y=-24 \\
& 2 x-4\left(\frac{11-2 x}{3}\right)=-24 \\
& 6 x-44+8 x=-72 \\
& 14 x-44=-72 \\
& 14 x=-28 \\
& x=-\frac{28}{14} \\
& x=-2
\end{aligned}
$$

$2 x+3 y=11$

$$
\begin{equation*}
y=\frac{11-2 x}{3} \tag{iii}
\end{equation*}
$$

Substitute $x=-2$ in equation (iii)

$$
\begin{aligned}
& y=\frac{11-2(-2)}{3} \\
& y=\frac{11+4}{3} \\
& y=\frac{15}{3} \quad \Rightarrow y=5
\end{aligned}
$$

Alternate method:
Cross multiplication method :

	x		y		
3	-11		2		3
-4	24		2		-4

Qn. Nos.	Value Points	Marks allotted	
$\frac{x}{72-44}=\frac{y}{-22-48}=\frac{1}{-8-6}$	$1 / 2$		
$\frac{x}{28}=\frac{y}{-70}=\frac{1}{-14}$			
	$\frac{x}{28}=\frac{1}{-14}$	$\frac{y}{-70}=\frac{1}{-14}$	$11 / 2$
$-14 x=28$	$-14 y=-70$		
$x=\frac{28}{-14}$	$y=\frac{-70}{-14}$	$1 / 2$	2

18. Find the sum of first 20 terms of arithmetic series $5+10+15+\ldots$. using suitable formula.

Ans. :
$5+10+15+$ \qquad
Sum of 20 terms $S_{20}=$?
$a=5$
$d=5$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$n=20$

$$
\begin{array}{ll}
S_{20}=\frac{20}{2}[2 \times 5+(20-1) 5] & 1 / 2 \\
S_{20}=10[10+(19) 5] & \\
S_{20}=10[10+95] & 1 / 2 \\
S_{20}=10 \times 105 & 1 / 2 \\
S_{20}=1050 &
\end{array}
$$

Find the value of k of the polynomial $P(x)=2 x^{2}-6 x+k$, such that the sum of zeros of it is equal to half of the product of their zeros.

Ans. :
$P(x)=2 x^{2}-6 x+k$
Let the Quadratic Polynomial be $P(x)=a x^{2}+b x+c$ and its zeros are α and β, we have $a=2 \quad b=-6 \quad c=k$.

Value Points	Marks
allotted	

Find the value of the discriminant of the quadratic equation $2 x^{2}-5 x-1=0$, and hence write the nature of its roots.

Ans. :
$2 x^{2}-5 x-1=0$
$a x^{2}+b x+c=0$
$a=2$
$b=-5$
$c=-1$
$1 / 2$
Discriminant $\quad \Delta=b^{2}-4 a c$
$\Delta=(-5)^{2}-4(2)(-1)$
$\Delta=25+8$
$\Delta=33$

$$
\therefore \quad \Delta>0
$$

$\therefore \quad$ The given equation has two distinct real roots.
Prove that $\operatorname{cosec} A(1-\cos A)(\operatorname{cosec} A+\cot A)=1$.

OR

Prove that $\frac{\tan A-\sin A}{\tan A+\sin A}=\frac{\sec A-1}{\sec A+1}$.
Ans. :
$\operatorname{cosec} A(1-\cos A)(\operatorname{cosec} A+\cot A)=1$
(LHS)
(RHS)

Qn.

Nos.
LHS $=\frac{1}{\sin A}(1-\cos A)\left(\frac{1}{\sin A}+\frac{\cos A}{\sin A}\right)$
$=\quad \frac{1-\cos A}{\sin A}\left(\frac{1+\cos A}{\sin A}\right)$
$=\quad \frac{1-\cos ^{2} A}{\sin ^{2} A}$
$=\quad \frac{\sin ^{2} A}{\sin ^{2} A}=1$
$\therefore \quad$ LHS $=$ RHS.

OR

$$
\frac{\tan A-\sin A}{\tan A+\sin A}=\frac{\sec A-1}{\sec A+1}
$$

LHS RHS
LHS $=\frac{\tan A-\sin A}{\tan A+\sin A}$
$=\frac{\frac{\sin A}{\cos A}-\sin A}{\frac{\sin A}{\cos A}+\sin A}$
$=\frac{\sin A\left[\frac{1}{\cos A}-1\right]}{\sin A\left[\frac{1}{\cos A}+1\right]}$
$=\frac{\sec A-1}{\sec A+1}$
$\therefore \quad$ LHS $=$ RHS.

Marks allotted
22. Find the coordinates of the mid-point of the line segment joining the points (2, 3) and (4, 7).

Ans. :
$(2,3)(4,7)$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$

are marked on the faces of a cubical die. If this die is rolled once, then find the probability of getting a vowel on its top face.

OR
A game of chance consists of rotating an arrow which comes to rest pointing at one of the numbers $1,2,3,4,5,6,7,8$ and these are equally possible outcomes. Find the probability that it will point at an odd number.

Ans. :

$$
\begin{array}{lll}
n(S)=6 & S=\{A, B, C, D, E, I\} & 1 / 2 \\
n(A)=3 & A=\{A, E, I\} & 1 / 2 \\
\therefore & P(A)=\frac{n(A)}{n(S)} & 1 / 2 \\
& P(A)=\frac{3}{6}=\frac{1}{2} & 1 / 2
\end{array}
$$

OR

Qn. Nos.	Value Points	Marks allotted
	$\begin{aligned} & n(S)=8 \quad S=\{1,2,3,4,5,6,7,8\} \\ & n(A)=4 \quad A=\{1,3,5,7\} \\ & \therefore \quad P(A)=\frac{n(A)}{n(S)}=\frac{4}{8} \\ & \quad \therefore \quad P(A)=\frac{1}{2} \end{aligned}$	2
24.	Draw a circle of radius 4 cm , and construct a pair of tangents to the circle, such that the angle between the tangents is 60°. Ans. : Angle between the radius $=180^{\circ}-60^{\circ}=120^{\circ}$	

Circle -	$1 / 2$
Radii -	$1 / 2$
Tangents -	1

$1 / 2$
1/2
1

Qn.

Nos.

Value Points \quad| Marks |
| :---: |
| allotted |

25.

Prove that $\sqrt{3}$ is an irrational number.
OR
Find L.C.M. of H.C.F. (306, 657) and 12.
Ans. :
Let us assume, to the contrary that $\sqrt{3}$ is rational.
We can find integers a and $b(b \neq 0)$ such that $\sqrt{3}=\frac{a}{b}$
Suppose a and b have a common factor other than 1, then we can divide by the common factor and assume that a and b are co-prime.
So, $b \sqrt{3}=a$
Squaring on both sides, and rearranging we get $3 b^{2}=a^{2}$
$\therefore \quad a^{2}$ is devisible by 3
$\therefore \quad a$ is also devisible by 3
$\therefore \quad a=3 c \quad c$ is integer
Substituting for a, we get

$$
3 b^{2}=9 c^{2}
$$

i.e. $b^{2}=3 c^{2}$

Means b^{2} is devisible by 3
$\therefore \quad b$ is also devisible by 3
$\therefore \quad a$ and b have at least 3 as a common factor.
But this contradicts the fact that a and b are co-prime
This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational. $1 / 2$

So, we conclude that $\sqrt{3}$ is rational.
Note : If they prove by any method give marks.

OR

Alternate method:
i) H.C.F. of (306, 657)

45 \begin{tabular}{c|c}

\multicolumn{1}{c}{| c |
| :---: | | 306 |
| ---: |
| 270 |}

\cline { 2 - 3 } \& 36
\end{tabular} $306=(45 \times 6)+36$

36 \begin{tabular}{c|c}

\multicolumn{1}{c}{| 1 |
| :---: |
| |
| 45
 36 |
| 9 |}

\end{tabular}

$$
45=(36 \times 1)+9
$$

The diagonal of a rectangular playground is 60 m more than the smaller side of the rectangle. If the longer side is 30 m more than the smaller side, find the sides of the playground.

OR

The altitude of a triangle is 6 cm more than its base. If its area is $108 \mathrm{~cm}^{2}$, find the base and height of the triangle.

Ans. :

Let the smaller side $B C=x$
Diagonal is 60 m more than smaller side
Diagonal $A C=x+60$

$$
\therefore \quad A B=x+30
$$

$\triangle A B C, \quad\left\lfloor B=90^{\circ}\right.$

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
&(x+60)^{2}=(x+30)^{2}+x^{2} \\
& x^{2}+ 120 x+3600=x^{2}+60 x+900+x^{2} \\
& x^{2}+120 x+3600=2 x^{2}+60 x+900 \\
& \therefore \quad 2 x^{2}-x^{2}+60 x-120 x+900-3600=0 \\
& x^{2}-60 x-2700=0 \\
& x^{2}-90 x+30 x-2700=0 \\
& x(x-90)+30(x-90)=0 \\
& x-90=0 \quad x+30=0 \\
& x=90 \mathrm{~m} \\
& B C=x=90 \mathrm{~m} \quad x=-30 \mathrm{~m} \\
& \therefore \quad A B=x+30=90+30=120 \mathrm{~m}
\end{aligned}
$$

Diagonal $A C=x+60=90+60=150 \mathrm{~m}$
OR

Let base $B C=x$
$\therefore \quad$ Altitude is 6 more than its base.
$\therefore \quad A D=x+6$

Qn. Nos.	Value Points	Marks allotted
	Area of triangle $=108 \mathrm{~cm}^{2}$ $\begin{aligned} & A=\frac{1}{2} \times b \times h \\ & 108=\frac{1}{2} \times x \times(x+6) \\ & 108 \times 2=x^{2}+6 x \\ & 216=x^{2}+6 x \\ & \therefore \quad \\ & x^{2}+6 x-216=0 \\ & x^{2}+18 x-12 x-216=0 \\ & x(x+18)-12(x+18)=0 \\ & x+18=0 \quad x-12=0 \\ & x=-18 \quad x=12 \end{aligned}$ $\therefore \quad$ Base of triangle $B C=x=12 \mathrm{~cm}$ Altitude of triangle $\begin{aligned} & A D=x+6 \\ & A D=12+6=18 \mathrm{~cm} . \end{aligned}$	3

In the figure, the vertices of $\triangle A B C$ are $A(0,6), B(8,0)$ and $C(5,8)$. If $C D \perp A B$, then find the length of altitude $C D$.

OR

Qn. Nos.	Value Points		
	Show that the triangle whose vertices are $A(8,-4$ $C(0,4)$ is an isosceles triangle. Ans. :		
	$\begin{aligned} & A(0,6) \\ & \quad\left(\begin{array}{ll} x_{1} & y_{1} \end{array}\right) \end{aligned}$	$\begin{aligned} & B(8,0) \\ & \quad\left(\begin{array}{ll} x_{2} & y_{2} \end{array}\right) \end{aligned}$	$\begin{aligned} & C(5,8) \\ & \quad\left(\begin{array}{ll} x_{3} & y_{3} \end{array}\right) \end{aligned}$

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \quad 1 / 2 \\
& =\frac{1}{2}[0(0-8)+8(8-6)+5(6-0)] \\
& =\frac{1}{2}[0+16+30] \\
& =\frac{1}{2} \times 46 .
\end{aligned}
$$

Area of $\triangle A B C=23 \mathrm{~cm}^{2}$

$$
\begin{array}{ll}
A(0,6) & B(8,0) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{array}
$$

Distance of $A B: \quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
d=\sqrt{(8-0)^{2}+(0-6)^{2}}
$$

$$
d=\sqrt{(8)^{2}+(6)^{2}}
$$

$$
d=\sqrt{64+36}
$$

$$
d=\sqrt{100}
$$

$$
A B=d=10 \mathrm{~cm}
$$

$\therefore \quad$ Area of $\triangle A B C=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
23 & =\frac{1}{2} \times A B \times C D \\
23 & =\frac{1}{2} \times 10 \times C D \\
46 & =10 C D
\end{aligned}
$$

Height $C D=\frac{46}{10}=4.6 \mathrm{~cm}$
OR
Qn.
Value Points

$$
\begin{gathered}
A(8,-4), \quad B(9,5), \quad C(0,4) \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{gathered}
$$

We observed that $\overline{A B}=\overline{B C}$

$$
A B=\sqrt{(9-8)^{2}+(5-(-4))^{2}}=\sqrt{1^{2}+9^{2}}=\sqrt{1+81}=\sqrt{82} \quad 1 / 2
$$

$$
B C=\sqrt{(9-0)^{2}+(4-5)^{2}}=\sqrt{9^{2}+(-1)^{2}}=\sqrt{81+1}=\sqrt{82} \quad 1 / 2
$$

$$
C A=\sqrt{(0-8)^{2}+(4-(-4))^{2}}=\sqrt{(-8)^{2}+8^{2}}=\sqrt{64+64}=\sqrt{128}
$$

Calculate the mode for the following frequency distribution table :

Class-interval	Frequency $\left(f_{i}\right)$
$0-5$	8
$5-10$	9
$10-15$	5
$15-20$	3
$20-25$	1
	$\sum f_{i}=26$

Qn. Nos.		Value Points	
	Ans. :		
		C.I.	Frequency (f_{i})
		0-5	8
		5-10	9
		10-15	5
		15-20	3
		20-25	1

Lower limit $l=5$
Frequency of modal class $f_{1}=9$
Frequency of preceding modal class $f_{0}=8$
Succeeding modal class $f_{2}=5$

Class size $h=5$

$$
\begin{aligned}
\text { Mode } & =l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\
& =5+\left[\frac{9-8}{2 \times 9-8-5}\right] \times 5 \\
& =5+\left[\frac{1}{18-8-5}\right] \times 5 \\
& =5+\left[\frac{1}{18-13}\right] \times 5 \\
& =5+\left[\frac{1}{5}\right] \times 5 \\
& =5+1
\end{aligned}
$$

Mode $=6$

Qn. Nos.	Value Points	Marks allotted

29.

An insurance policy agent found the following data for distribution of ages of 35 policy holders. Draw a "less than type" (below) of ogive for the given data :

Age (in years)	Number of policy holders
Below 20	2
Below 25	6
Below 30	12
Below 35	16
Below 40	20
Below 45	25
Below 50	35

Ans. :

RR (A)-1115 \star (MA)

Ans. :

Data: In $\triangle A B D$

$$
\text { In } \triangle A B C
$$

$$
\begin{aligned}
& B C: C D=1: 2 \\
& A B=B C=A C
\end{aligned}
$$

To Prove : $A D^{2}=7 A C^{2}$
Construction : Draw $A E \perp B C$
Proof: In $\triangle A B C$

$$
B E=E C=\frac{a}{2} \text { and } A E=\frac{a \sqrt{3}}{2}
$$

In $\triangle A D E, \angle A E D=90^{\circ}$

$$
\begin{aligned}
& A D^{2}=A E^{2}+E D^{2} \\
& A D^{2}=\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(2 a+\frac{a}{2}\right)^{2} \\
& A D^{2}=\frac{3 a^{2}}{4}+\left(\frac{5 a}{2}\right)^{2}
\end{aligned}
$$

Prove that "the lengths of tangents drawn from an external point to a circle are equal".

Ans. :

Note: Any alternate method can be given marks.

Data: $\quad O$ is the centre of the circle P is an external point $P Q$ and $P R$ are the tangents$1 / 2$

To prove: $\quad P Q=P R$
Construction: $O Q, O R$ and $O P$ are joined
Proof: \quad In $\triangle P O Q$ and $\triangle P O R$
$\lfloor P Q O=\lfloor P R O$ (Radius drawn at the point of contact is perpendicular to the tangent)
hyp $O P=$ hyp $O P$ (Common side)
$O Q=O R$ (Radii of same circle)
$\therefore \quad \triangle P O Q \cong \triangle P O R \quad$ (R.H.S. theorem)
$\therefore \quad P Q=P R$

Proof: We are given a circle with centre O, a point P lying outside the circle and two tangents $P Q$ and $P R$ on the circle from P.

We are required to prove that $P Q=P R$ $1 / 2$

For this we join $O P, O Q$ and $O R$.
Then $\lfloor O Q P$ and $\lfloor O R P$ are right angles because these are angles between the radii and tangents.

Now right angles $\triangle O Q P=\lfloor O R P$

$$
O Q=O R(\text { Radii })
$$

$O P=O P($ Common side $)$
$\therefore \quad \triangle O Q P \cong \triangle O R P \quad$ (R.H.S.)
This gives $P Q=P R$.

Qn.	Value Points	Marks Nos.

32.

$A B$ and $C D$ are the arcs of two concentric circles with centre O of radius 21 cm and 7 cm respectively. If $\mid A O B=30^{\circ}$ as shown in the figure, find the area of the shaded region.

OR
In the figure, $A B C D$ is a square, and two semicircles touch each other externally at P. The length of each semicircular arc is equal to 11 cm . Find the area of the shaded region.

Ans. :

$$
\text { Area of sector } \begin{aligned}
\overparen{O A B} & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{30}{360} \times \frac{22}{7} \times 21 \times 21 \\
& =\frac{11 \times 21}{2} \\
& =\frac{231}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted

$\therefore \quad$ Area of shaded region $=$ area of sector $\quad-\quad$ area of sector

$$
\begin{aligned}
& \overparen{O A B} \\
&= \frac{231}{2}-\frac{77}{6} \\
&= \frac{693-77}{6} \\
&= \frac{616}{6}=\frac{308}{3}
\end{aligned}
$$

$$
\overparen{O C D}
$$

$\therefore \quad$ Area of shaded region $=102.6 \mathrm{~cm}^{2}$
OR
Perimeter of semicircle $=\pi r$

$$
\begin{aligned}
11 & =\pi r \\
11 & =\frac{22}{7} \times r \quad \Rightarrow \quad r=\frac{7}{2}=3.5 \mathrm{~cm}
\end{aligned}
$$

$1 / 2$

Qn. Nos.	Value Points	Marks allotted	
	\therefore	Area of shaded region $=$ Area of $A B C D$	- Area of two semi-circles
	$=49-38.5$	$1 / 2$	
		$1 / 2$	3

33. Construct a triangle with sides $6 \mathrm{~cm}, 7 \mathrm{~cm}$ and 8 cm and then construct another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the constructed triangle.

Ans. :

Constructing given triangle

Drawing acute angle line and dividing into 4 parts

Qn. Nos.	Value Points	Marks allotted

34. Find the solution of the following pair of linear equations by the graphical method.

$$
\begin{aligned}
& 2 x+y=8 \\
& x+y=5
\end{aligned}
$$

Ans. :

$$
\begin{aligned}
& 2 x+y=8 \\
& y=8-2 x
\end{aligned}
$$

x	0	1	2	3	4
y	8	6	4	2	0

$$
\begin{aligned}
& x+y=5 \\
& y=5-x
\end{aligned}
$$

x	0	1	2	3	4
y	5	4	3	2	1

Tables -
Drawing or Plotting 2 straight lines -
Identifying Intersecting straight line points and answer -

4

Note: For each line any two suitable points may be taken.

35. An aircraft flying parallel to the ground in the sky from the point A through the point B is observed, the angle of elevation of aircraft at A from a point on the level ground is 60°, after 10 seconds it is observed that the angle of elevation of aircraft at B is found to be 30° from the same point. Find at what height the aircraft is flying, if the velocity of

| Qn.
 Nos. | Value Points |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| aircraft is $648 \mathrm{~km} / \mathrm{hr}$. (Use $\sqrt{3}=1.73$) | |
| Level ground | |

Ans. :

Velocity $\rightarrow 648 \mathrm{~km} / \mathrm{h} \Rightarrow \frac{648 \times 1000}{3600}$

$$
\Rightarrow \quad 180 \mathrm{~m} / \mathrm{sec} .
$$

After 10 sec velocity of air craft $=180 \times 10$

$$
=1800 \mathrm{~m}
$$

In the diagram $O C=x \quad C D=1800 \mathrm{~m} \quad O D=1800+x$

Qn.	Value Points	Marks Nos.

36. Prove that "if in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar".

Ans. :

Data : \quad In $\triangle A B C$ and $\triangle D E F$

$$
\lfloor B A C=\lfloor E D F
$$

$$
\lfloor A B C=\lfloor D E F
$$

To prove : $\quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Construction: Mark points G and H on $A B$ and $A C$ such that

$$
A G=D E \text { and } A H=D F, \text { join } G \text { and } H .
$$

Qn. Nos.	Value Points	Marks allotted

Proof :

Statement	Reason	
Compare $\triangle A G H$ and $\triangle D E F$		
$A G=D E$	Construction	
$G A H=\underline{E D F}$	Data	
$A H=D F$	Construction 1/2	
$\triangle A G H \cong \triangle D E F$	SAS	
$\underline{A G H}=\underline{D E F}$	CPCT	
But $\triangle \underline{A B C}=\underline{D E F}$	Data	
$\Rightarrow \quad \triangle A G H=\bigsqcup A B C$	Axiom - 1	
$\therefore \quad G H \\| B C$	If corresponding angles are equal then lines are parallel.	
$\therefore \quad$ In triangle $A B C$		
$\frac{A B}{A G}=\frac{B C}{G H}=\frac{A C}{H A}$	Corrollary of Thales theorem ½	

Hence $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{F D} \quad \triangle A G H \cong \triangle D E F$.

Alternate method:

Qn. Nos.	Value Points	Marks allotted	
	This theorem can be proved by taking two triangles $A B C$ and $D E F$ such that $\lfloor A=\lfloor D,\lfloor B=\lfloor E$ and $\lfloor C=\lfloor F \quad 1 / 2$ Cut $D P=A B$ and $D Q=A C$ and join $P Q$, So, $\triangle A B C \cong \triangle D P Q$. 1 This gives $\lfloor B=\lfloor P=\lfloor E$ and $P Q \\| E F$ $\therefore \quad \frac{D P}{P E}=\frac{D Q}{Q F}$ i.e., $\frac{A B}{D E}=\frac{A C}{D F}$ Similarly, $\frac{A B}{D E}=\frac{B C}{E F}$ and so $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$	4	

37. A medicine capsule is in the shape of a cylinder with hemispheres stuck to each of its ends. The length of the entire capsule is 14 mm and the diameter of the capsule is 5 mm . Find its surface area.

OR

A right circular cone of height 30 cm is cut and removed by a plane parallel to its base from the vertex. If the volume of smaller cone obtained is $\frac{1}{27}$ of the volume of the given cone, calculate the height of

Ans. :

Diameter of hemisphere $=5 \mathrm{~mm}$
$\therefore \quad$ Radius $=2.5 \mathrm{~mm}$

Length of entire capsule $=14 \mathrm{~mm}$
$\therefore \quad$ Height of cylinder $\quad h=14-5$

$$
h=9 \mathrm{~mm}
$$

$$
1 / 2
$$

$\therefore \quad$ Surface area of the capsule $=2 \pi r h+2\left(2 \pi r^{2}\right)$

$$
\begin{array}{ll}
=2 \pi r[h+2 r] & \\
=2 \times \frac{22}{7} \times 2.5[9+2 \times 2.5] & 1 / 2 \\
=2 \times \frac{22}{7} \times 2.5 \times 14 & 1 / 2 \\
=2 \times \frac{22}{7} \times 2.5 \times 2 & 1 / 2 \\
=88 \times 2.5 &
\end{array}
$$

$\therefore \quad$ Surface area of capsule $=220 \mathrm{~mm}^{2}$ $1 / 2$

$$
1 / 2
$$

OR

Value Points	Marks
allotted	

Substitute (i) in (ii)

$$
\begin{aligned}
& \left(\frac{h_{1}}{30}\right)^{2} \times h_{1}=\frac{10}{9} \\
& \frac{h_{1}^{3}}{900}=\frac{10}{9} \\
& h_{1}^{3}=1000 \\
& h_{1}=\sqrt[3]{1000} \\
& A B=h_{1}=10 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Height of the remaining part of the cone is

$$
\begin{aligned}
B P & =A P-A B \\
& =30-10
\end{aligned}
$$

$$
B P=20 \mathrm{~cm}
$$

38.

The common difference of two different arithmetic progressions are equal. The first term of the first progression is 3 more than the first term of second progression. If the 7th term of first progression is 28 and 8th term of second progression is 29 , then find the both different arithmetic progressions.

Ans. :
$a=b+3$
$1 / 2$
$a_{7}=28$
$a+6 d=28$
$b_{8}=29$
$b+7 d=29$
... (iii)
$1 / 2$

Substitute (i) in (ii)

$$
\begin{align*}
& a+6 d=28 \\
& b+3+6 d=28 \\
& b+6 d=25 \tag{iv}
\end{align*}
$$

Substract (iv) from (iii)
$b+7 d=29$
$b+6 d=25$
$(-) \quad(-) \quad(-)$
$d=4$
$\Rightarrow \quad d=4$
Substitute $d=4$ in (ii)

$$
\begin{aligned}
& a+6 d=28 \\
& a+6(4)=28 \\
& a+24=28 \\
& a=28-24 \\
& a=4
\end{aligned}
$$

