ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಸಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಸೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2015

S. S. L. C. EXAMINATION, MARCH/APRIL, 2015

ಮಾದರಿ ಉತ ರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 01. 04. 2015]

Date : 01. 04. 2015]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy) CODE NO. : 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

- (ಭೌತಶಾಸ್ತ್ರ / Physics)
- (ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)
- (ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / Private Fresh)

(ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಪರಮಾವಧಿ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn. Nos.	Value Points	Total
1.	The correct equation of nuclear fusion reaction is Ans. : (C) ${1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + Energy$	1
3.	The minimum distance between the source of sound and the reflecting surface necessary to cause echo is $Ans : (B) - 17 m$	1
6.	The transformer among the following in which output voltage is more than the input voltage is $$	1
	Ans. : (A) - P3 5 PF-5024	1 urn over

83-E	(Phy)
------	-------

Qn. Nos.	Value Points	Total
12.	What is a Solar Cell ?	
	Ans. : The device that converts solar energy into electrical energy.	1
19.	Write the function of the following parts of nuclear reactor along with the material used in making it :	
	(a) Control rod (b) Moderator.	
	Ans. :	
	a) Control rod :	
	Function : Used to control the nuclear reaction. $\frac{1}{2}$	
	OR	
	Used to control the number of neutrons causing fission reaction by absorbing neutrons.	
	<i>Material used</i> : Cadmium / boron carbide. $\frac{1}{2}$	
	b) Moderator :	
	Function : Used to slow down fast moving neutrons. $\frac{1}{2}$	
	<i>Material used</i> : Graphite / heavy water. $\frac{1}{2}$	2
23.	Calculate the period of a wave, which is having the wavelength 17 m and	
	wave velocity 340 m/s.	
	Ans. :	
	Data : $v = 340 \text{ m/s}$	
	$\lambda = 17 \text{ m} \qquad \qquad \frac{1}{2}$	
	$v = n\lambda$ (Or $v = f\lambda$)	
	$340 = n \times 17$	
	$\therefore n = \frac{340}{17} = 20 \qquad \qquad 1$	
	$\therefore \text{Period} = \frac{1}{n} = \frac{1}{20} = 0.05 \text{ seconds.} \qquad \qquad \frac{1}{2}$	2
	PF-5024	

Qn. Nos.	Value Points	Total
24.	Steam engines of Indian railways are replaced with diesel engines. Justify this move with two scientific reasons.	
	Ans. :	
	★ Efficiency of diesel engine is more.	
	★ Diesel engine is more economical.	
	★ Diesel engine can be started instantly. (any <i>two</i>) $1 + 1$	2
26.	Draw the diagram of a petrol engine.	
	Ans.:	2
27.	Imagine that a listener who is at rest is listening to the sound of frequency 20 Hz, produced by a stationary source. If the source starts	
	moving away from the listener, will the listener be able to hear the sound ? Justify your answer.	
	Ans. :	
	He will not be able to listen to the sound.	
	Due to Doppler effect the frequency of sound becomes less than 20 Hz	-
	which is not audible. 1	2
	PF-5024 [T	urn over

Qn. Nos.	Value Points	Total
35.	State Faraday's laws of electromagnetic induction.	
	Ans. :	
	Ist Law : Whenever a magnetic field linked with the conductor changes an	
	e.m.f. will be induced in the conductor. 1	
	<i>IInd Law</i> : The magnitude of induced e.m.f. is directly proportional to the	
	rate of change of magnetic field.	2
36.	Name four strokes of a petrol engine.	
	Ans. :	
	i) Intake stroke	
	ii) Compression stroke	
	iii) Power stroke	
	iv) Exhaust stroke. $4 \times \frac{1}{2}$	2
37.	Draw the diagram of a single stage rocket.	
	Ans. :	
		2
		4

CCE	P	F

83-E (Phy)

Qn. Nos.		Value Points		Total
45.	What are extrinsic semiconductors ? Write two differences between the			
	two types of extrinsic semiconductors.			
		OR		
	Wh bia	nat is biasing a diode ? Write two differences between the two kind asing.	s of	
	An	.S. :		
	Sei	mi-conductors which are doped with trivalent or pentavalent dopa e called extrinsic semiconductor.	ints 1	
		n-type semiconductor p-type semiconductor		
	a)	Doped with pentavalent i) Doped with trivalent dopants		
		dopants	1	
	b)	Electrons are majority ii) holes are majority charge		
		charge carriers and holes carriers and electrons are		
		are minority charge carriers minority charge carriers	1	3
		OR		
	Ap	plying external potential differences to a diode is called biasing diod	e.	
			1	
		Forward biasing Reverse biasing		
	a)	Positive terminal of the i) Positive terminal of the battery	r	
		battery is connected to the is connected to the <i>n</i> -region of		
		<i>p</i> -region of the diode and the diode and negative termina	ા	
		negative terminal is is connected to the <i>p</i> -region.	1	
		connected to the <i>n</i> -region		
	b)	Offers low resistance for ii) Offers high resistance for the		
		the flow of electric current flow of electric current.	1	3
		(Or any other suitable differenced)		
		● PF-5024	[T	urn over

CCE	PF
-----	----

CCE PE	7 83	-E (Phy)
Qn. Nos.	Value Points	Total
	★ When the outward pressure due to release of energy balances gravitational pull, the star is said to be in steady state. $\frac{1}{2}$	
	★ The outward pressure due to radiation exceeds gravitational pull, now the outer envelope of the star starts expanding. $\frac{1}{2}$	
	★ Due to the expansion of outer layer, the temperature of star decreases and the colour changes to red. This is called red giant. $\frac{1}{2}$	4
	OR	
	Principle of rocket :	
	The total momentum of the system is conserved when the net external	
	force acting on the system is zero. 1	
	Orbital velocity : Velocity of the object (satellite / rocket) along the	
	circular path around the earth is orbital velocity. 1	
	Escape velocity : The minimum velocity with which a body (rocket) must	
	be projected, so that it escapes from the earth's gravitational field.	
	$v_e = \sqrt{2} v_o$ 1	4

