## CCE RF

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಸಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

## KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಸೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ — 2015

S. S. L. C. EXAMINATION, MARCH/APRIL, 2015

ಮಾದರಿ ಉತ ರಗಳು

## **MODEL ANSWERS**

ದಿನಾಂಕ: 01. 04. 2015 ] ಸಂಕೇತ ಸಂಖ್ಯೆ: **83-E(Phy)** 

Date: 01.04.2015] **CODE NO.: 83-E (Phy)** 

ವಿಷಯ: ವಿಜ್ಞಾನ

**Subject: SCIENCE** 

( ಭೌತಶಾಸ್ತ್ರ/ Physics )

( ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus )

( ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Fresh ) (ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version )

[ ಪರಮಾವಧಿ ಅಂಕಗಳು : 80

 $\star\star\star$ 

[ Max. Marks: 80

[ Turn over

| Qn.<br>Nos. | Value Points                                                                                                                              | Total |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.          | The correct equation of nuclear fusion reaction is<br>Ans. : (C) — $_1$ H $^2$ + $_1$ H $^2$ $\rightarrow$ $_2$ He $^4$ + Energy          | 1     |
| 3.          | The minimum distance between the source of sound and the reflecting surface necessary to cause echo is $Ans.: (B) - 17 \text{ m}$         | 1     |
| 6.          | The transformer among the following in which output voltage is more than the input voltage is  Ans.: (A) $\longrightarrow$ S $\bigcirc$ S |       |
|             |                                                                                                                                           | 1     |

RF-1024

 $\star\star\star$ 

| Qn.<br>Nos. | Value Points                                                                                              | Total |
|-------------|-----------------------------------------------------------------------------------------------------------|-------|
| 12.         | What is a Solar Cell ?                                                                                    |       |
|             | Ans.: The device that converts solar energy into electrical energy.                                       | 1     |
| 23.         | Calculate the period of a wave, which is having the wavelength 17 m and                                   |       |
|             | wave velocity 340 m/s.                                                                                    |       |
|             | Ans. :                                                                                                    |       |
|             | Data: $v = 340 \text{ m/s}$                                                                               |       |
|             | $\lambda = 17 \text{ m}$                                                                                  |       |
|             | $v = n\lambda$ (or $v = f\lambda$ )                                                                       |       |
|             | $340 = n \times 17$                                                                                       |       |
|             | $\therefore n = \frac{340}{17} = 20 \text{ hertz}$                                                        |       |
|             | $\therefore  \text{Period} = \frac{1}{n} = \frac{1}{20} = 0.05 \text{ second.} \qquad \qquad \frac{1}{2}$ | 2     |
| 24.         | Steam engines of Indian railways are replaced with diesel engines. Justify                                |       |
|             | this move with two scientific reasons.                                                                    |       |
|             | Ans.:                                                                                                     |       |
|             | ★ Efficiency of diesel engine is more.                                                                    |       |
|             | ★ Diesel engine is more economical.                                                                       |       |
|             | ★ Diesel engine can be started instantly. (any $two$ ) 1 + 1                                              | 2     |

| Qn.<br>Nos. | Value Points                                                          | Total |
|-------------|-----------------------------------------------------------------------|-------|
| 26.         | Draw the diagram of a petrol engine.                                  |       |
|             | Ans.:                                                                 | 2     |
| 27.         | Imagine that a listener who is at rest is listening to the sound of   |       |
|             | frequency 20 Hz produced by a stationary source. If the source starts |       |
|             | moving away from the listener, will the listener be able to hear the  |       |
|             | sound? Justify your answer.                                           |       |
|             | Ans. :                                                                |       |
|             | He will not be able to listen to the sound.                           |       |
|             | Due to Doppler effect the frequency of sound becomes less than 20 Hz  |       |
|             | which is not audible.                                                 | 2     |

\*\*\*

CCE RF



| Qn.<br>Nos. | Value Points                                                                                                | Total |
|-------------|-------------------------------------------------------------------------------------------------------------|-------|
| 35.         | What are extrinsic semiconductors? Write two differences between the two types of extrinsic semiconductors. |       |
|             | OR                                                                                                          |       |
|             | What is biasing a diode? Write two differences between the two kinds of                                     |       |
|             | biasing.                                                                                                    |       |
|             | Ans.:                                                                                                       |       |
|             | Semi-conductors which are doped with trivalent or pentavalent dopants                                       |       |
|             | are called extrinsic semiconductor.                                                                         |       |
|             | n-type semiconductor p-type semiconductor                                                                   |       |
|             | a) Doped with pentavalent i) Doped with trivalent dopants                                                   |       |
|             | dopants 1                                                                                                   |       |
|             | b) Electrons are majority ii) holes are majority charge                                                     |       |
|             | charge carriers and holes carriers and electrons are                                                        |       |
|             | are minority charge carriers minority charge carriers 1                                                     | 3     |
|             | OR                                                                                                          |       |

| Qn.<br>Nos. | Value Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|             | Applying external potential differences to a diode is called biasing diode.                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 36.         | Forward biasing  Reverse biasing  a) Positive terminal of the i) Positive terminal of the battery battery is connected to the is connected to the n-region of p-region of the diode and the diode and negative terminal negative terminal is is connected to the p-region.  b) Offers low resistance for ii) Offers high resistance for the the flow of electric current flow of electric current.  ( Or any other suitable difference )  Draw the diagram of induction coil and label the following: | 3        |
|             | (a) Primary coil  (b) Make and break arrangement.  Ans.:  Make and break arrangement  For diagram                                                                                                                                                                                                                                                                                                                                                                                                     | 2        |
|             | Primary coil  For labelling the parts $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3        |
|             | $\star\star\star$ RF-1024 $\star\star\star$ [T                                                                                                                                                                                                                                                                                                                                                                                                                                                        | urn over |

| Qn.<br>Nos. | Value Points                                                                     | Total |
|-------------|----------------------------------------------------------------------------------|-------|
| 40.         | What is Stellar evolution ? Explain the evolution of a star from its birth       |       |
|             | up to the red giant stage.                                                       |       |
|             |                                                                                  |       |
|             | OR                                                                               |       |
|             | State the principle of rocket. With respect to the launching of rocket,          |       |
|             | define orbital velocity and escape velocity. Write the relationship between      |       |
|             | them.                                                                            |       |
|             | Ans.:                                                                            |       |
|             | The process from birth to death of star is called stellar evolution.             |       |
|             | ★ Gaseous clouds in the space contract due to gravity $\frac{1}{2}$              |       |
|             | ★ About 99% of the gas accumulates in the form of a sphere. This is              |       |
|             | called protostar. $\frac{1}{2}$                                                  |       |
|             | ★ The temperature and pressure rise at the core of the protostar. When           |       |
|             | the temperature reaches about 10 million K, hydrogen undergoes                   |       |
|             | fusion reaction and releases energy. $\frac{1}{2}$                               |       |
|             | ★ When the outward pressure due to release of energy balances                    |       |
|             | gravitational pull, the star is said to be in steady state. $\frac{1}{2}$        |       |
|             | ★ The outward pressure due to radiation exceeds gravitational pull, now          |       |
|             | the outer envelope of the star starts expanding. $\frac{1}{2}$                   |       |
|             | ★ Due to the expansion of outer layer, the temperature of star                   |       |
|             | decreases and the colour changes to red. This is called red giant. $\frac{1}{2}$ | 4     |
|             | OR                                                                               |       |
|             |                                                                                  |       |

| Qn.<br>Nos. | Value Points                                                              | Total |
|-------------|---------------------------------------------------------------------------|-------|
|             | Principle of rocket:                                                      |       |
|             | The total momentum of the system is conserved when the net external       |       |
|             | force acting on the system is zero.                                       |       |
|             | Orbital velocity: Velocity of the object ( satellite / rocket ) along the |       |
|             | circular path around the earth is orbital velocity.                       |       |
|             | Escape velocity: The minimum velocity with which a body (rocket) must     |       |
|             | be projected, so that it escapes from the earth's gravitational field.    |       |
|             | $v_e = \sqrt{2} v_o$                                                      | 4     |

