

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2022

S. S. L. C. EXAMINATION, MARCH/APRIL, 2022

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 04. 04. 2022]

Date : 04. 04. 2022]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E

CODE NO. : 81-E

ವಿಷಯ : ಗಣಿತ

Subject : MATHEMATICS

(ಶಾಲಾ ಅಭ್ಯರ್ಥಿ & ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Fresh & Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I.		Multiple choice : $8 \times 1 = 8$	
1.		The graphical representation of the pair of lines $x + 2y - 4 = 0$ and $2x + 4y - 12 = 0$ is (A) intersecting lines (B) parallel lines (C) coincident lines (D) perpendicular lines. <i>Ans.</i> :	
	(B)	parallel lines	1
		RF/RR (A)-(200)-9020 (MA)	Turn over

8	1	-E
---	---	----

31-E		2	CCE RF & R
Qn. Nos.	Ans. Key	Value Points	Marks allottee
2.		The common difference of the Arithmetic progression	
		8, 5, 2, – 1, is	
		(A) – 3 (B) – 2	
		(C) 3 (D) 8.	
		Ans. :	
	(A)	- 3	1
3.		The standard form of $2x^2 = x - 7$ is	
		(A) $2x^2 - x = -7$ (B) $2x^2 + x - 7 = 0$	
		(C) $2x^2 - x + 7 = 0$ (D) $2x^2 + x + 7 = 0$.	
		Ans. :	
	(C)	$2x^2 - x + 7 = 0$	1
4.		The value of $\cos(90^\circ - 30^\circ)$ is	
		(A) -1 (B) $\frac{1}{2}$	
		(C) 0 (D) 1.	
		Ans. :	
	(B)	$\frac{1}{2}$	1
5.		The distance of the point $P(x, y)$ from the origin is	
		(A) $\sqrt{x^2 + y^2}$ (B) $x^2 + y^2$	
		(A) $\sqrt{x^2 + y^2}$ (B) $x^2 + y^2$ (C) $x^2 - y^2$ (D) $\sqrt{x^2 - y^2}$.	
		Ans. :	
	(A)	Ans.: $\sqrt{x^2 + y^2}$	1
I		RF/RR (A)-(200)-9020 (MA)	I

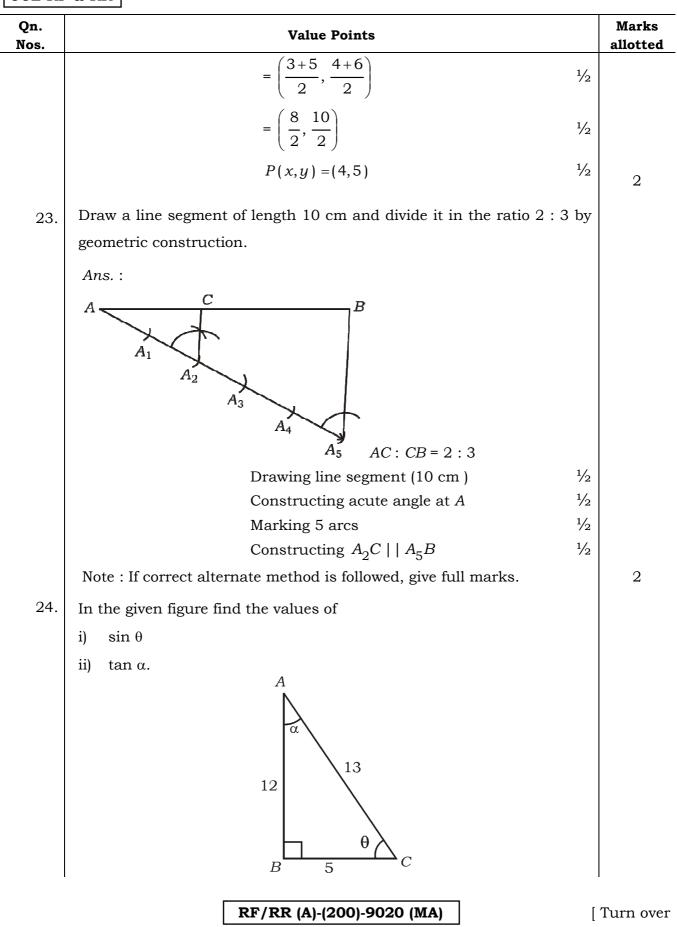
Qn. os.	Ans. Key	Val	lue Points	Marks allotted
6.	·	In a circle, the angle betwee point of contact is	n the tangent and the radius at the	
		(A) 30°	(B) 60°	
		(C) 90°	(D) 180°.	
		Ans. :		
	(C)	90°		1
7.		In the given figure, the volum	e of the frustum of a cone is	
			r_2 h h	
		(A) $\pi (r_1 + r_2) l$	(B) $\pi (r_1 - r_2) l$	
		(C) $\frac{1}{3}\pi h (r_1^2 - r_2^2 - r_1r_2)$	(D) $\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1r_2)$	
		Ans. :		
	(D)	$\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1 r_2\right)$		1
0		Surface area of a sphere of ra	idius <i>'r'</i> unit is	
8.		(A) πr^2 sq.units	(B) $2\pi r^2$ sq.units	
		(C) $3\pi r^2$ sq.units	(D) $4\pi r^2$ sq.units.	
		Ans. :		
	(D)	$4\pi r^2$ sq.units		1

RF/RR (A)-(200)-9020 (MA)

[Turn over

81	-E
----	----

81-E	4	CERF & RR
Qn. Nos.	Value Points	Marks allotted
II.	Answer the following questions : $8 \times 1 =$	8
	(Direct answers from Q. Nos. 9 to 16 full marks should be given)	
9.	If the pair of linear equations in two variables are inconsistent, the	en
	how many solutions do they have ?	
	Ans. :	
	No solution	1
10.	In an Arithmetic progression if 'a' is the first term and 'd' is the	he
	common difference, then write its n^{th} term.	
	Ans. :	
	$a_n = a + (n-1)d$	1
11.	Write the standard form of quadratic equation.	
	Ans. :	
	$ax^2 + bx + c = 0$	1
12.	Write the value of $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$.	
	Ans.:	
	1	1
13.	Write the distance of the point $(4, 3)$ from <i>x</i> -axis.	
	Ans. :	
	3	1
14.	Find the median of the scores $6, 4, 2, 10$ and 7 .	
	Ans. :	
	6	1
	0	


81-E

CCE RF	& RR 5	81-E
Qn. Nos.	Value Points	Marks allotted
15.	Write the statement of "Basic Proportionality" theorem (That theorem).	lles
	Ans. :	
	If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in same ratio.	
	Note : If correct alternate statement is written, give full marks.	1
16.	In the given figure, write the formula used to find the curved surfa area of the cone.	ace
	Ans. :	
	Curved surface area of cone = πrl sq units	1
III.	Answer the following questions : $8 \times 2 =$	16
17.	Solve the given pair of linear equations by Elimination method : 2x + y = 8	
	x - y = 1	
	Ans. :	
	2x + y = 8(1)	1/
	Adding $x - y = 1$ (2) 3x = 9	1/2
	$3\lambda - 2$	I
	RF/RR (A)-(200)-9020 (MA)	[Turn ove

Qn. Nos.	Value Points		Marks allotted
	$x = \frac{9}{3}$		
	x = 3	$\frac{1}{2}$	
	Substituting $x = 3$ in (1)	, –	
	2(3) + y = 8	1⁄2	
	6 + <i>y</i> = 8		
	y = 8 - 6		2
	<i>y</i> = 2	1⁄2	
18.	Find the 30th term of the arithmetic progression 5, 8, 11, using formula.	by	
	Ans. :		
	5, 8, 11		
	Here $a = 5$, $d = 8 - 5 = 3$, $n = 30$	1⁄2	
	<i>n</i> th term of arithmetic progression		
	$a_n = a + (n-1)d$	1⁄2	
	$a_{30} = 5 + (30 - 1)3$	1⁄2	
	$= 5 + 29 \times 3$		
	= 5 + 87		
	$a_{30} = 92$	1⁄2	
			2
19.	Find the sum of first 20 terms of the Arithmetic progression 10, 15, 20, by using formula.		
	OR		
	Find the sum of first 20 positive integers using formula.		
	Ans. :		
	$a = 10, d = 15 - 10 = 5, n = 20, S_{20} = ?$		
	$S_n = \frac{n}{2} [2a + (n-1)d]$	$\frac{1}{2}$	

CCE RF			81-E
Qn. Nos.	Value Points		Marks allotted
	$S_{20} = \frac{20}{2} [2(10) + (20 - 1)5]$	1/2	
	$= 10 [20 + 19 \times 5]$		
	= 10 [20 + 95]		
	= 10 × 115	1/2	
	$S_{20} = 1150$	1/2	
	Note : Any other suitable method is followed to get the correct full marks should be given.	answer,	2
	OR		
	$S_n = \frac{n(n+1)}{2}$	1/2	
	$n = 20$ $S_{20} = \frac{20(20+1)}{2}$	1/2	
	$=\frac{20\times21}{2}$		
	= 10 × 21	1/2	
	S ₂₀ =210	1/2	2
20.	Find the roots of $x^2 + 5x + 2 = 0$ by using quadratic formula.		
	Ans. :		
	$x^2 + 5x + 2 = 0$		
	$ax^2 + bx + c = 0$		
	a = 1, b = 5, c = 2		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1/2	
	$= \frac{-5\pm\sqrt{5^2-4(1)(2)}}{}$	1/2	
	2(1)	, 1	
	$=\frac{-5\pm\sqrt{25-8}}{2}$	1/2	
	$=\frac{-5\pm\sqrt{17}}{2}$	1/2	2
I	RF/RR (A)-(200)-9020 (MA)	1	Turn ove
		l	

01-E	0	CCE I	XF & KK
Qn. Nos.	Value Points		Marks allotted
21.	Find the value of the discriminant and hence write the nature of re of the quadratic equation $x^2 + 4x + 4 = 0$. Ans.: $x^2 + 4x + 4 = 0$ $ax^2 + bx + c + 0$	oots	
	a = 1, b = 4, c = 4		
	Discriminant = $b^2 - 4ac$	1⁄2	
	$= 4^2 - 4(1) (4)$ = 16 - 16	1⁄2	
	= 0	$\frac{1}{2}$	
	Nature of roots : Two equal real roots.	1/2	2
22.	Find the distance between the points $A(2, 6)$ and $B(5, 10)$ by us distance formula.	sing	
	OR		
	Find the coordinates of the mid-point of the line segment joining points $P(3, 4)$ and $Q(5, 6)$ by using 'mid-point' formula. Ans.:	the	
	A(2, 6) B(5, 10) $x_1, y_1 x_2, y_2$		
	Distance formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	1⁄2	
	$= \sqrt{(5-2)^2 + (10-6)^2}$ $= \sqrt{3^2 + 4^2}$	1⁄2	
	$= \sqrt{9+16}$	17	
	$=\sqrt{25}$ d = 5 units	$\frac{1}{2}$ $\frac{1}{2}$	2
	OR	72	2
	$P(3, 4) Q(5, 6) \\ x_1, y_1 x_2, y_2$		
	Mid-point formula $P(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	1/2	

Qn.	Value Points		Marks
Nos.	Ans. :		allotted
	(i) $\sin\theta = \frac{12}{13}$	1	
	(ii) $\tan \alpha = \frac{5}{12}$	1	2
V.	Answer the following questions : 9×3	= 27	
25.	The sum of first 9 terms of an Arithmetic progression is 144 and its	s	
	9th term is 28 then find the first term and common difference of th	ne	
	Arithmetic progression.		
	Ans. :		
	$S_n = \frac{n}{2} [a+l]$	1/2	
	$S_9 = \frac{9}{2} [a + 28]$		
	$144 = \frac{9}{2} [a + 28]$	1⁄2	
	$ \begin{array}{c} 144 = \frac{9}{2} \left[a + 28 \right] \\ \frac{16}{9} = a + 28 \end{array} $		
	32 = a + 28		
	a = 32 - 28	1⁄2	
	a = 4		
	$a_n = a + (n-1) d$	1⁄2	
	$a_9 = 4 + (9 - 1) d$ 28 = 4 + 8d		
		1/2	
	24 = 8d		
	$d = \frac{24}{8}$		
	d = 3	1⁄2	3
	* Any other correct alternate, method may be given full marks.		

CCE RF	66 RR 11	81-E
Qn. Nos.	Value Points	Marks allotted
26.	The diagonal of a rectangular field is 60 m more than its shorter side	
	If the longer side is 30 m more than the shorter side, then find the	<u>×</u>
	sides of the field.	
	OR	
	In a right angled triangle, the length of the hypotenuse is 13 cm.	
	Among the remaining two sides, the length of one side is 7 cm more than the other side. Find the sides of the triangle.	;
	Ans. :	
	AD	
	$x m$ $(x \neq 60) m$	
	B = (x + 30) m	
	$ABCD \rightarrow$ rectangular field	
	Let $AB = x$ m then $BC = (x+30)$ m, $AC = (x+60)$ m	
	$AC^2 = AB^2 + BC^2 $ ¹ / ₂	2
	$(x+60)^2 = x^2 + (x+30)^2$	2
	$x^{2} + 60^{2} + 2 \times x \times 60 = x^{2} + x^{2} + 30^{2} + 2 \times x \times 30$	
	$3600 + 120x = x^2 + 900 + 60x$	
	$x^2 + 900 + 60x - 3600 - 120x = 0$	
	$x^2 - 60x - 2700 = 0$ ¹ / ₂	2
	$x^2 - 90x + 30x - 2700 = 0$	
	x(x-90)+30(x-90)=0	
	(x-90)(x+30)=0 ¹ / ₂	2
	x - 90 = 0 or $x + 30 = 0$	
	x = 90 or $x = -30$ (not considered)	2
	$\therefore x = 90$	
	AB = x = 90 m	
	BC = (x + 30) = 90 + 30 = 120 m ¹ / ₂	2 3
	OR	
	RF/RR (A)-(200)-9020 (MA)	[Turn over

Qn. Nos.	Value Points		Marks allotted
	$x \operatorname{cm} = \begin{bmatrix} A \\ 13 \operatorname{cm} \\ B \\ (x+7) \operatorname{cm} \end{bmatrix} C$		
	Let <i>ABC</i> be a right angled triangle.		
	Let $AC = 13$ cm, $AB = x$ cm and $BC = (x + 7)$ cm		
	$AC^2 = AB^2 + BC^2$	1/2	
	$13^2 = x^2 + (x+7)^2$	1/2	
	$\Rightarrow 169 = x^2 + x^2 + 49 + 14x$		
	$\Rightarrow 169 = 2x^2 + 49 + 14x$		
	$\Rightarrow 2x^2 + 49 + 14x - 169 = 0$		
	$\Rightarrow 2x^2 + 14x - 120 = 0$	1/2	
	$\div 2$, $x^2 + 7x - 60 = 0$		
	$\Rightarrow x^2 + 12x - 5x - 60 = 0$		
	$\Rightarrow x(x+12)-5(x+12)=0$		
	$\Rightarrow (x+12)(x-5)=0$	1/2	
	x + 12 = 0 or $x - 5 = 0$		
	x = -12 or $x = 5$		
	(not considered) $\therefore x = 5$	1/2	
	AB = x = 5 cm		
	BC = (x + 7) = 5 + 7 = 12 cm	1/2	3

Qn. Nos.	Value Points		Marks allotted
27.	Prove that		
	$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A.$		
	OR		
	Prove that : $\sec \theta (1 - \sin \theta) (\sec \theta + \tan \theta) = 1$.		
	Ans. :		
	LHS = $(\sin A + \csc A)^2 + (\cos A + \sec A)^2$		
	$= \sin^2 A + \cos ec^2 A + 2\sin A \cdot \csc A + \cos^2 A + \sec^2 A$		
	$+2\cos A.\sec A$	1	
	$= \underline{\sin^2 A + \cos^2 A} + \csc^2 A + 2 \sin A \cdot \frac{1}{\sin A} + \sec^2 A$		
	$+2\cos A \cdot \frac{1}{\cos A}$	1	
	$= 1 + (1 + \cot^2 A) + 2 + (1 + \tan^2 A) + 2$		
	$[:: \operatorname{cosec}^2 A = 1 + \cot^2 A$		
	$\sec^2 A = 1 + \tan^2 A$		
	$\sin^2 A + \cos^2 A = 1$]	$\frac{1}{2}$	
	$= 7 + \tan^2 A + \cot^2 A$	$\frac{1}{2}$	
	LHS = RHS		3
	OR		
	LHS = $\sec \theta (1 - \sin \theta) (\sec \theta + \tan \theta)$		
	$= \frac{1}{\cos\theta} \left(1 - \sin\theta\right) \left(\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\right)$	1	
	$=\frac{(1-\sin\theta)}{\cos\theta}\times\frac{(1+\sin\theta)}{\cos\theta}$	1⁄2	
	$=\frac{1-\sin^2\theta}{\cos^2\theta}$	1⁄2	
	$=\frac{\cos^2\theta}{\cos^2\theta} \qquad [::1-\sin^2\theta=\cos^2\theta]$	1⁄2	
	= 1	$\frac{1}{2}$	
	\therefore L.H.S. = R.H.S		3
	RF/RR (A)-(200)-9020 (MA)	[Turn ove

51-E	14 CCI	ERF & RR
Qn. Nos.	Value Points	Marks allotted
28.	Find the coordinates of the point on the line segment joining the points	3
	A(-1, 7) and $B(4, -3)$ which divides AB internally in the ratio	
	2:3.	
	OR	
	Find the area of triangle PQR with vertices $P(0, 4)$, $Q(3, 0)$ and $R(3, 5)$.	
	Ans. :	
	A(-1,7), B(4,-3) 2:3	
	$A(-1, 7),$ $B(4, -3)$ $2:3$ x_1, y_1 x_2, y_2 $m_1 m_2$	
	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	
	$=\left(\frac{2(4)+3(-1)}{2+3},\frac{2(-3)+3(7)}{2+3}\right)^{\frac{1}{2}}$	2
	$=\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)$ ^{1/2}	2
	$=\left(\frac{5}{5},\frac{15}{5}\right)$	2
	P(x,y) = (1,3)	3
	OR	
	P(0, 4), Q(3, 0) R(3, 5)	
	x_1, y_1 x_2, y_2 x_3, y_3	
	$A = \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$	
	$=\frac{1}{2}[0(0-5)+3(5-4)+3(4-0)]$	2

81-E

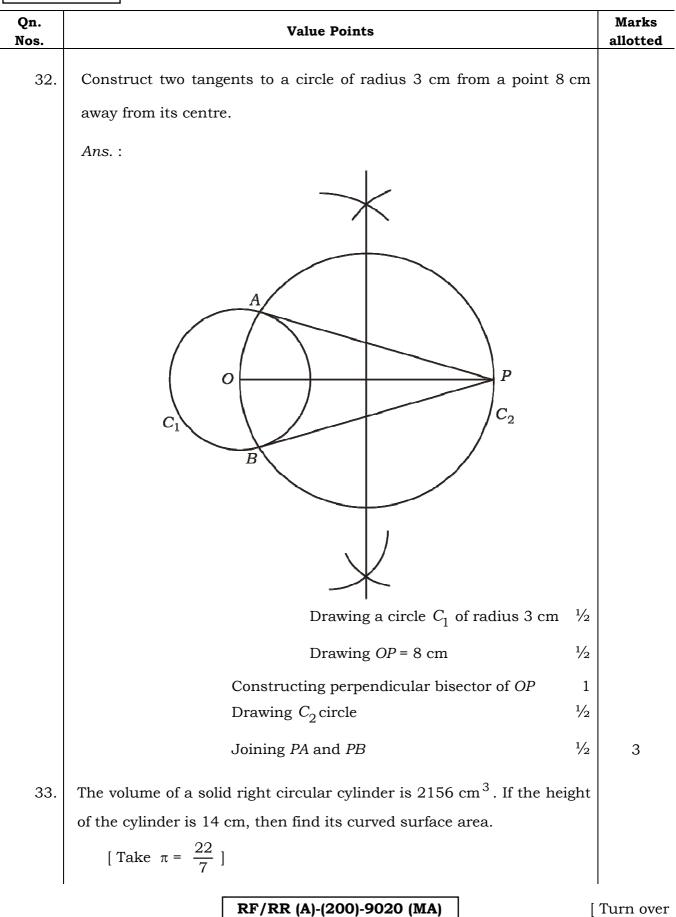
CCE RI	F & RR		15		81-E
Qn. Nos.		Valu	e Points		Marks allotted
	$=\frac{1}{2}$	[0(-5)+3(1)+3(4)]		1/2	
	$=\frac{1}{2}$	[0+3+12]		1/2	
	$=\frac{1}{2}$	× 15			3
		• or 7·5 sq. units		1/2	
29.	Find th	ne mean for the following g	rouped data by Direc	ct method :	
		Class-interval	Frequency		
		10 — 20	2		
		20 — 30	3		
		30 — 40	5		
		40 — 50	7		
		50 — 60	3		
			OR		
	Fir	nd the mode for the following	ng grouped data :		
		Class-interval	Frequency		
		5 — 15	3		
		15 — 25	4		
		25 — 35	8		
		35 — 45	7		
		45 — 55	3		

RF/RR (A)-(200)-9020 (MA)

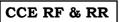
[Turn over

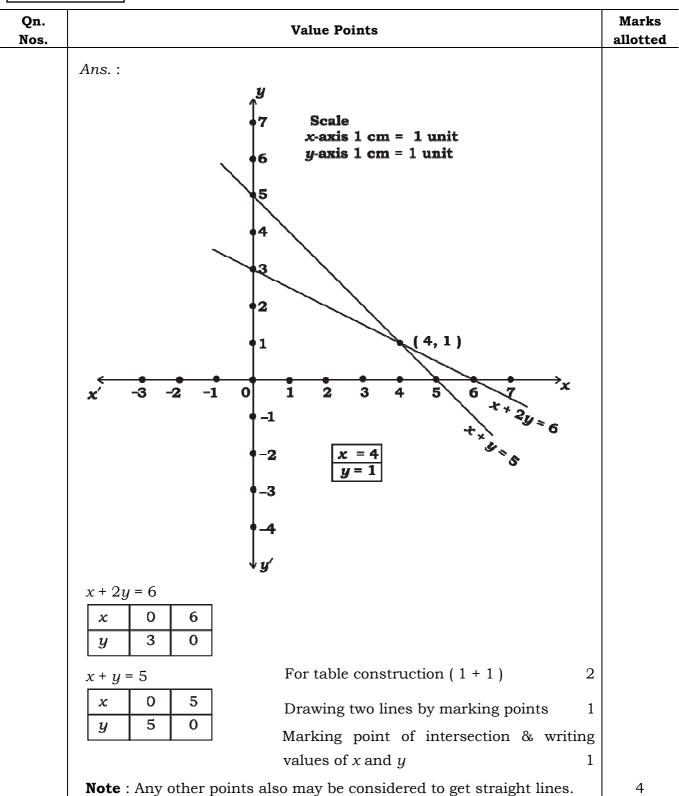
Qn. Nos.	Value Points				Marks allotte		
	Ans	5. :					
		C-I	f_i	x _i	$f_i x_i$		
		10-20	2	15	30		
		20-30	3	25	75		
		30-40	5	35	175		
		40-50	7	45	315		
		50-60	3	55	165		
			<i>N</i> = 20		$\sum f_i x_i = 760$		
				Table	<u> </u>	2	
				[Mid points - finding $f_i x_i$			
				Mean, $\overline{X} = \sum_{x \in X} \overline{X}$	$\frac{\sum f_i x_i}{N}$ OR $\frac{\sum FX}{N}$	- ¹ / ₂	
				$=\frac{760}{20}$			
				\overline{X} =38		1/2	3
				OR			
	f_0 =	$=4, f_1 = 8, j$	$f_2 = 7, h = 10$ as		d that		
	Мос	$de = l + \left[\frac{1}{2f} \right]$	$\frac{f_1 - f_0}{f_1 - f_0 - f_2}] \times h$	'n		1	
			$\frac{8-4}{(8)-4-7}] \times 10$)		1/2	
			$\frac{4}{5-11}] \times 10$			1/2	
		$= 25 + \frac{4}{\aleph_1} \times$	X0 ²			1/2	
		= 25 + 8				$\frac{1}{2}$	3
	3.5	de = 33					

	° & RR			
Qn. Nos.	Value Points			Marks allotted
30.		a medical check-up ed as follows :	of 50 students of a class, their heights were	
	Dra	aw "less than type" o	give for the given data :	
		Height in cm	Number of students (Cumulative frequency)	
		Less than 140	5	
		Less than 145	10	
		Less than 150	15	
		Less than 155	25	
		Less than 160	40	
		Less than 165	50	
	40 35 30 30 25 25 25 20 20 31		ø	
	a 15 ↑ 10			


81-E		

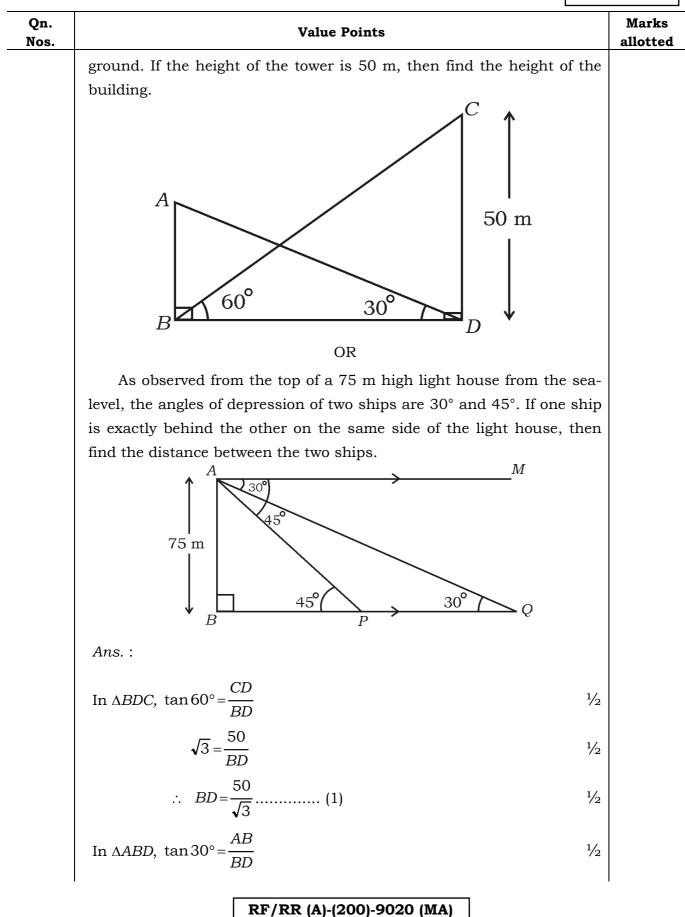
Qn. Nos.	Value Points	Marks allotted
	Drawing axes and writing scale $\frac{1}{2} + \frac{1}{2} = 1$	
	Marking points 1	
	Drawing Ogive 1	3
31.	Prove that "the lengths of tangents drawn from an external point to a	
	circle are equal".	
	Ans. :	
	R $1/_2$	
	Data : O is the centre of the circle. PQ and PR are tangents drawn from	
	external point 'P. $\frac{1}{2}$	
	To Prove : $PQ = PR$ $\frac{1}{2}$	
	Construction : Join <i>OP</i> , <i>OQ</i> and <i>OR</i> . $\frac{1}{2}$	
	Proof : In the figure	
	$\angle OQP = \angle ORP = 90^{\circ} \qquad \left(\begin{array}{c} OQ \perp PQ \\ OR \perp PR \end{array} \right)$	
	$OQ = OR$ [radii of same circle] $\frac{1}{2}$	
	OP = OP [common side]	
	$\Delta OQP \cong \Delta ORP \qquad [RHS] \qquad \qquad$	
	PQ = PR [CPCT]	
	Note : If the theorem is proved as given in the text-book, give full	


marks.


RF/RR (A)-(200)-9020 (MA)

3

Qn.		
Nos.	Value Points	Marks allotted
	Ans. :	
	$V = 2156 \text{ cm}^3$	
	h = 14 cm	
	<i>r</i> = ?	
	CSA = ?	
	Volume of cylinder = $\pi r^2 h$	/2
	$2156 = \frac{22}{\tilde{\tau}_1} \times r^2 \times 14^2$	/2
	$2156 = 44 r^2$	
	$r^2 = \frac{2156}{44}$	
	$r^2 = 49$	
	$r = \sqrt{49}$	
	r = 7 cm	/2
	Curved surface area of $\int = 2\pi rh$	/2
	cylinder $\int = 2 \times \frac{22}{7} \times 7 \times 14$	/2
	$= 2 \times 22 \times 14$	
	$= 616 \text{ cm}^2$	/2 3
7.	Answer the following questions : $4 \times 4 = 1$	6
34.	Find the solution of the given pair of linear equations by graphica	al
	method :	
	x + 2y = 6	
	x + 2y = 6 $x + y = 5$	

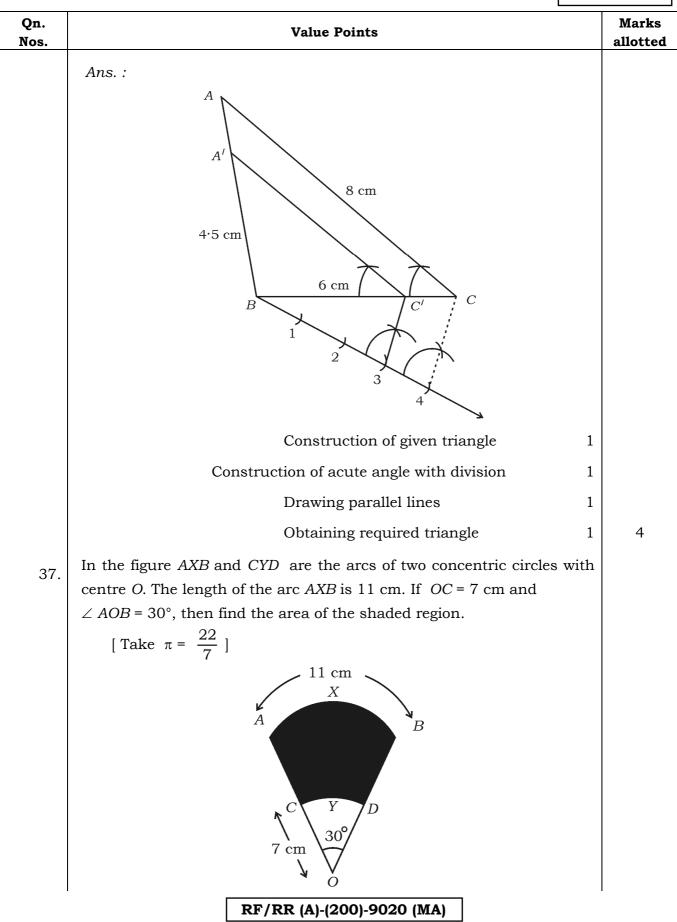

The angle of elevation of the top of a building from the foot of a tower is

 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . Both the tower and building are on the same level

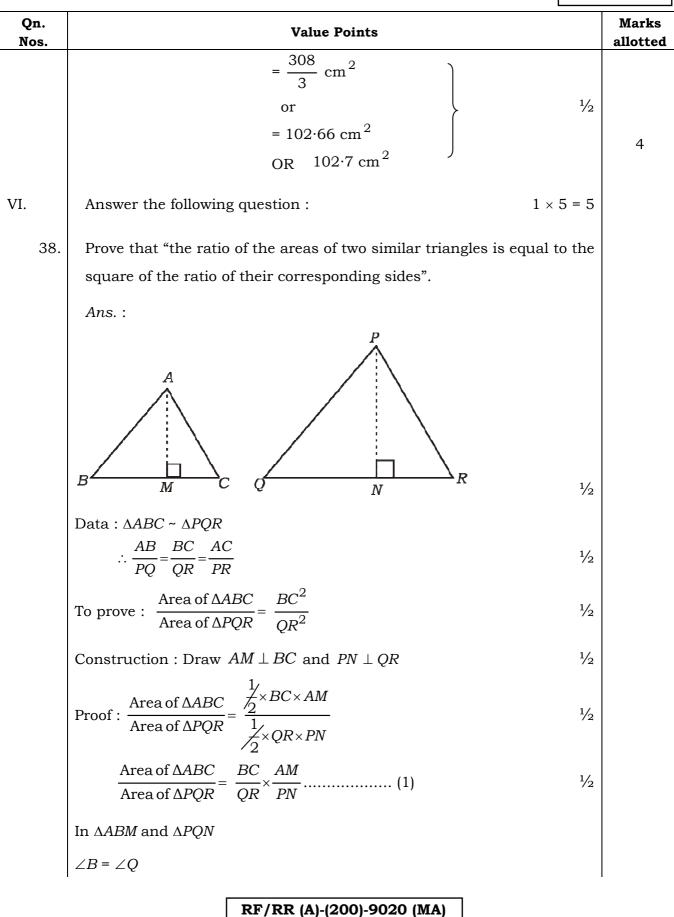
RF/RR (A)-(200)-9020 (MA)

35.

[Turn over


CCE	RF	&	RR
-----	----	--------------	----

Qn. Nos.	Value Points	Marks allotted
	$\frac{1}{\sqrt{3}} = \frac{AB}{BD}$	
	$BD = \sqrt{3} \cdot AB$	
	From (1) and (2)	
	$\sqrt{3} \cdot AB = \frac{50}{\sqrt{3}}$	
	$AB = \frac{50}{\sqrt{3} \cdot \sqrt{3}}$ ¹ / ₂	
	$AB = \frac{50}{3} \text{ or } 16\frac{2}{3} \text{ m}$ ¹ / ₂	4
	OR	
	Distance between the two ships is PQ	
	In $\triangle ABP$, $\tan 45^\circ = \frac{AB}{BP}$ $\frac{1}{2}$	
	$1 = \frac{75}{BP}$ ¹ / ₂	
	$\therefore BP = 75$	
	In $\triangle ABQ$, $\tan 30^\circ = \frac{AB}{BQ}$ $\frac{1}{2}$	
	$\frac{1}{\sqrt{3}} = \frac{75}{BP + PQ}$ ¹ / ₂	
	$\frac{1}{\sqrt{3}} = \frac{75}{75 + PQ}$ ¹ / ₂	
	$75 + PQ = 75\sqrt{3}$	
	$PQ = 75\sqrt{3} - 75$ ¹ / ₂	
	$PQ = 75(\sqrt{3}-1) \text{ m}$ ¹ / ₂	4
36.	Construct a triangle with sides 4.5 cm, 6 cm and 8 cm. Then construct	
	another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the	
	first triangle.	


RF/RR (A)-(200)-9020 (MA)

[Turn over

Qn. Nos.	Value Points	Mark allotte
	Ans. :	
	Length of the arc = $\frac{\theta}{360^{\circ}} \times 2\pi r$	1/2
	$11 = \frac{30^{\circ}}{360^{\circ}_{12}} \times 2 \times \frac{22^{11}}{7} \times r$	1/2
	$11 = \frac{11r}{21}$	
	$r = \frac{11 \times 21}{11}$	
	r = 21 cm	1/2
	Area of the sector $OAXB = A_1 = \frac{\theta}{360^\circ} \times \pi r^2$	1/2
	$=\frac{30^{\circ}}{360^{\circ}}\times\frac{22}{7}\times21^2$	
	$=\frac{1}{\mathcal{V}_{\mathscr{H}_{2}}}\times\frac{\mathcal{Z}^{11}}{\mathcal{T}_{1}}\times\mathcal{Z}^{1}\times21$	
	$=\frac{231}{2}$ cm ²	1/2
	Area of the sector OCYD = $A_2 = \frac{\theta}{360^\circ} \times \pi r^2$	
	$=\frac{30^{\circ}}{360^{\circ}}\times\frac{22}{7}\times7^{2}$	
	$=\frac{1}{12_6}\times\frac{22^{11}}{7}\times7\times7$	
	$A_2 = \frac{77}{6} \text{ cm}^2$	1/2
	Area of the shaded region = $A_1 - A_2$	
	$=\frac{231}{2}-\frac{77}{6}$	
	$=\frac{693-77}{6}$	1/2
	$=\frac{616}{6}$	
	RF/RR (A)-(200)-9020 (MA)	ا [Turn o

1. S.	Value Points		Marks allotted
	$\angle M = \angle N = 90^{\circ}$ [By construction]		
	$\Delta ABM \sim \Delta PQN \qquad [AA similarity criterion]$	1/2	
	$\frac{AM}{PN} = \frac{AB}{PQ} \dots \dots$	1/2	
	But $\frac{BC}{QR} = \frac{AB}{PQ}$ (3) (data)		
	From (2) and (3)		
	$\frac{AM}{PN} = \frac{BC}{QR} \dots \dots$	1/2	
	Substituting (4) in (1) Area of $AABC = BC = BC$		
	$\frac{\text{Area of }\Delta ABC}{\text{Area of }\Delta PQR} = \frac{BC}{QR} \times \frac{BC}{QR}$		
	$\frac{\text{Area of }\Delta ABC}{\text{Area of }\Delta PQR} = \frac{BC^2}{QR^2}$	1/2	5