

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BENGALURU, 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ / ಜುಲೈ, 2022

S.S.L.C. EXAMINATION, JUNE / JULY, 2022

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 04. 07. 2022]

Date : 04. 07. 2022]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 81-E

CODE NO. : 81-E

ವಿಷಯ : ಗಣಿತ

Subject : MATHEMATICS

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I.		Multiple choice : $8 \times 1 = 8$	
1.		Lines represented by the pair of linear equations $x - y = 8$ and $3x - 3y = 16$ are	
		(A) intersecting lines	
		(B) parallel lines	
		(C) perpendicular lines	
		(D) coincident lines.	
		Ans. :	
	(B)	parallel lines	1
		RR (A)-(600)-13046 (MA)	Turn over

8	1	-E
---	---	----

Qn. Nos.	Ans. Key	Valu	ie Po	ints	Marks allotte
2.		In an arithmetic progression difference is	5,	3, 1, – 1, the common	
		(A) – 2	(B)	2	
		(C) – 3	(D)	5.	
		Ans. :			
	(A)	- 2			1
3.		x(x+1) = 5 is a			
		(A) linear equation	(B)	quadratic equation	
		(C) cubic equation	(D)	quadratic polynomial.	
		Ans. :			
	(B)	quadratic equation			1
4.		$1 + \tan^2 \theta$ is equal to			
		(A) $\csc^2 \theta$	(B)	$\frac{1}{\csc^2 \theta}$	
		(C) $\sec^2 \theta$	(D)	$-\sec^2\theta$	
		Ans. :			
	(C)	$\sec^2 \theta$			1
5.		Value of cot 90° is			
		(A) $\frac{1}{\sqrt{3}}$	(B)	1	
		(C) $\sqrt{3}$	(D)	0.	
		Ans. :			
	(D)	0			1
6.	(-)	Distance of the point $P(a, b)$	fron	the origin is	
0.					
		(A) $\sqrt{a^2 + b^2}$ units (C) $\sqrt{a + b}$ units	נש) ירו)	\sqrt{a} b units	
			(D)	$\sqrt{u-D}$ units.	
		Ans. :			
	(A)	$\sqrt{a^2+b^2}$ units			1
•		RR (A)-(600)-130	046 (MA)	

Qn. Nos.	Ans. Key		Value Points	Marks allotted
7.		In the figure, secant is M A A		\rightarrow
		(A) AB(C) XY	N (B) <i>PQ</i> (D) <i>MN</i> .	
	(D)	Ans. : MN		1
8.		Volume of a sphere of (A) $\frac{2}{3} \pi r^2$ cubic uni (B) $\frac{2}{3} \pi r^3$ cubic uni (C) $\frac{4}{3} \pi r^3$ cubic uni (D) $\frac{4}{3} \pi r^2$ cubic uni	ts ts	
	(C)	Ans. : $\frac{4}{3}\pi r^3$ cubic units		1

RR (A)-(600)-13046 (MA)

[Turn over

8	1-E
---	-----

Qn.	4 Value Points	Marks
Nos.		allotted
II.	Answer the following questions : $8 \times 1 = 8$	
9.	How many solutions does the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ have if they are	
	inconsistent ?	
	Ans. :	
	No solution	1
10.	What is an Arithmetic progression ?	
	Ans. :	
	An arithmetic progression is a list of numbers in which each term is	
	obtained by adding a fixed number to the preceding term, except the	
	first term.	
	[Note : Any other correct definition carries marks.]	1
11.	Write the standard form of a quadratic equation.	
	Ans. :	
	$ax^2 + bx + c = 0$	1
12.	In the figure, <i>ABC</i> is a right angled triangle. If $\angle C = 30^{\circ}$ and $AB = 12$ cm then find the length of <i>AC</i> .	
	12 cm ?	
	30°	
	Ans. :	
	$\sin 30^\circ = \frac{AB}{AC}$ ^{1/2}	
	$\frac{1}{2} = \frac{12}{AC}$	
	$AC = 24 \text{ cm}$ $\frac{1}{2}$	1
	RR (A)-(600)-13046 (MA)	

Qn.		Marks
Nos.	Value Points	allotted
13.	Write the coordinates of point P if it divides the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio	
	$m_1 : m_2$.	
	Ans. :	
	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	1
14.	Find the mode of the following scores :	
	4, 5, 5, 6, 7, 7, 6, 7, 5, 5	
	Ans. :	
	5	1
15.	State "Basic proportionality theorem" (Thales theorem).	
	Ans. :	
	If a line is drawn parallel to one side of a triangle to intersect the other	
	two sides in distinct points, the other two sides are divided in the	
	same ratio.	
	[Note : Any other correct alternative statement may be given marks]	1
16.	Write the formula to find the volume (V) of the frustum of a cone of height h and radii of two circular ends r_1 and r_2 .	
	Ans. :	
	$V = \frac{1}{3} \pi h [r_1^2 + r_2^2 + r_1 r_2] \text{ cubic units}$	1
II.	Answer the following questions : $8 \times 2 = 16$	
17.	Solve the given equations by elimination method :	
	2x + 3y = 7	
	2x + 3y = 7 $2x + y = 5$	

RR (A)-(600)-13046 (MA)

[Turn over

81-E	6	CCE RR
Qn. Nos.	Value Points	Marks allotted
	Ans. :	
	2x + 3y = 7(1)	
	2x + y = 5(2)	
	Subtract equation (2) from equation (1)	
	2x + 3y = 7 2x + y = 5 ¹ / ₂	
	2x + y = 5 ¹ / ₂	
	2y = 2	
	$y = \frac{2}{2}$	
	<i>y</i> = 1 ¹ / ₂	
	Substituting $y = 1$ in equation (2)	
	$2x + 1 = 5$ $\frac{1}{2}$	
	2x = 5 - 1	
	2 x = 4	
	$x = \frac{4}{2}$	
	$x = 2$ $\frac{1}{2}$	
	$\therefore x=2, y=1$	2
18.	Find the 12th term of the Arithmetic progression 2, 5, 8, using formula.	
	Ans. :	
	In the AP 2, 5, 8	
	a = 2 $d = 3$	
	<i>a</i> ₁₂ =?	
	n = 12	
	$a_n = a + (n-1)d$ ¹ / ₂	
	$a_{12} = 2 + (12 - 1) (3)$ ¹ / ₂	
	$= 2 + 11 (3)$ $\frac{1}{2}$	
	= 2 + 33 $a_{12} = 35$ ¹ / ₂	2

RR (A)-(600)-13046 (MA)

81-E

CCE RR	7	81-E
Qn. Nos.	Value Points	Marks allotted
19.	Find the sum of arithmetic progression 7, 11, 15, to 16 terms using formula.	
	OR	
	Find how many terms of the arithmetic progression 3, 6, 9, must be added to get the sum 165.	
	Ans. :	
	7 + 11 + 15 + up to 16 terms	
	$\therefore a = 7$	
	<i>d</i> = 4	
	<i>n</i> = 16	
	$S_n = \frac{n}{2} [2a + (n-1)d]$ ¹ / ₂	
	$S_{16} = \frac{16}{2} [2(7) + (16 - 1)(4)]$ ¹ / ₂	
	=8[14+60] ¹ / ₂	
	= 8 (74)	
	S ₁₆ =592 ¹ / ₂	2
	OR	
	In the A.P. 3, 6, 9,	
	a = 3	
	<i>d</i> = 3	
	Given that $S_n = 165$	
	<i>n</i> = ?	
	So, $165 = 3 + 6 + 9 + \dots n'$ terms	
	165 = 3 [1 + 2 + 3 + <i>n</i> terms] $\frac{1}{2}$	
	$\frac{165}{3} = \frac{n(n+1)}{2}$ ¹ / ₂	
	$55 = \frac{n(n+1)}{2}$	
	$\therefore n(n+1) = 55 \times 2 \qquad \qquad \frac{1}{2}$	
	n(n+1) = 110	
·	RR (A)-(600)-13046 (MA)	Turn ove

81-E	8	CCE RR
Qn. Nos.	Value Points	Marks allotted
	$n(n+1) = 10 \times 11$	
	\Rightarrow n = 10 $\frac{1}{2}$	
	\therefore The sum of first 10 terms of the A.P. is 165.	2
	[Note : Any other correct method carries marks]	4
20.	Find the value of the discriminant of the equation $4x^2 - 12x + 9 = 0$	
	and hence write the nature of the roots.	
	Ans. :	
	$4x^2 - 12x + 9 = 0$	
	a = 4, b = -12, c = 9	
	Discriminant = $b^2 - 4ac$ ¹ / ₂	
	$D = (-12)^2 - 4(4) (9)$ ¹ / ₂	
	= 144 - 144	
	$D = 0$ $\frac{1}{2}$	
	\therefore The roots are real and equal. $\frac{1}{2}$	2
21.	Find the roots of the equation $x^2 - 3x + 1 = 0$ using quadratic formula. Ans.: $x^2 - 3x + 1 = 0$	
	a = 1, b = -3, c = 1	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ¹ / ₂	
	$= \frac{-(-3)\pm\sqrt{(-3)^2-4(1)(1)}}{2(1)}$ ¹ / ₂	
	$=\frac{3\pm\sqrt{9-4}}{2}$ ¹ / ₂	
	$x = \frac{3 \pm \sqrt{5}}{2}$	
	$x = \frac{3 + \sqrt{5}}{2}$ or $\frac{3 - \sqrt{5}}{2}$	2
	$x = \frac{3+\sqrt{5}}{2}$ or $\frac{3-\sqrt{5}}{2}$ RR (A)-(600)-13046 (MA)	

CCE RR	9	81-E
Qn. Nos.	Value Points	Marks allotted
22.	In the figure ABC is a right angled triangle. If $AB = 24$ cm, $BC = 7$ cm	1
	and $AC = 25$ cm, then write the value of sin α and cos α .	
	P C C C C C C C C C C C C C C C C C C C	
	Ans.:	
	$\sin \alpha = \frac{AB}{AC}$	2
	$\sin \alpha = \frac{24}{25}$	2
	$\cos \alpha = \frac{BC}{AC}$	2
	$\cos \alpha = \frac{7}{25}$	2 2
23.	Find the distance between the points $P(2, 3)$ and $Q(4, 1)$ using distance formula.	5
	OR	
	Find in what ratio the point $P(-4, 6)$ divides the line segment joining the points $A(-6, 10)$ and $B(3, -8)$. Ans.:	t
	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	2
	$= \sqrt{(4-2)^2 + (1-3)^2}$	2
	$= \sqrt{2^2 + (-2)^2}$	2
	$=\sqrt{4+4}$	2
	$=\sqrt{8}$	
	= $2\sqrt{2}$ units	2
	OR	
	RR (A)-(600)-13046 (MA)	

01-E	10	CCE RR
Qn. Nos.	Value Points	Marks allotted
	Using section formula, we get	
	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$ ^{1/2}	
	$(-4,6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$	
	Equating 'x' coordinates , we get,	
	$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$ ¹ / ₂	
	$-4m_1 - 4m_2 = 3m_1 - 6m_2$	
	$6m_2 - 4m_2 = 3m_1 + 4m_1$ ¹ / ₂	
	$2m_2 = 7m_1$ $\frac{m_1}{m_2} = \frac{2}{7}$	
	m ₂ 7	
	$\therefore m_1:m_2=2:7$ ¹ / ₂	
	[Note : We get the same result by equating ' y ' coordinates. Any other correct alternate answer carries marks.]	2
24.	Draw a line segment of length 8.4 cm and divide it in the ratio 1 : 3 by geometric construction.	
	Ans. :	
	$A \underbrace{C}_{A_1} \\ A_2 \\ A_3 \\ A_4$	
	AC: CB = 1:3	
	To draw line segment $AB = 8.4$ cm $\frac{1}{2}$	
	Acute angle and 4 equal parts $\frac{1}{2}$	
	To draw $A_1 C \mid \mid A_4 B$. 1	
	[Note : Any other correct alternate method should be considered for	
	evaluation]	2

RR (A)-(600)-13046 (MA)

81-E

CCE RR		81-E
Qn. Nos.	Value Points	Marks allotted
IV.	Answer the following questions : $9 \times 3 = 27$	
25.	Find the arithmetic progression whose third term is 16 and its 7th term exceeds the 5th term by 12.	
	Ans. :	
	$a_3 = 16$	
	and $a_7 = a_5 + 12$ ¹ / ₂	
	<i>a</i> ₃ =16	
	$\therefore a + 2d = 16$ (1) $\frac{1}{2}$	
	$a_7 = a_5 + 12$	
	$\alpha + 6d = \alpha + 4d + 12$ ¹ / ₂	
	2d = 12	
	$d = \frac{12}{2}$	
	d = 6	
	Substituting $d = 6$ in equation (1)	
	a + 2d = 16	
	a + 2 (6) = 16	
	a + 12 = 16 ¹ / ₂	
	a = 16 - 12 a = 4	
	\therefore Arithmetic progression is $a, a + d, a + 2d, \dots$	
	4, 10, 16, ¹ / ₂	3
26.	The sum of the reciprocals of Rehman's age (in years) 3 years ago and	
	his age 5 years from now is $\frac{1}{3}$. Find his present age.	
	OR	
	A train travels 360 km at a uniform speed. If the speed had been	
	5 km/h more, it would have taken 1 hour less for the same journey.	
	Find the speed of the train.	
	Ans. :	
	Let the present age of Rehman be ' x 'years.	
	3 years ago, his age was $(x-3)$ years. After 5 years from now, his age will be $(x + 5)$ years. $\frac{1}{2}$	
ļ		
	RR (A)-(600)-13046 (MA)	Turn over

	12	L	
Qn. Nos.	Value Points		Marks allotted
	According to the condition,		
	$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$	$\frac{1}{2}$	
	x-3 + x+5 = 3	74	
	$\frac{x+5+x-3}{1} = \frac{1}{1}$	$\frac{1}{2}$	
	$\overline{x^2 + 2x - 15}^{=3}$, =	
	$\frac{2x+2}{x^2+2x-15} = \frac{1}{3}$		
	$x^2 + 2x - 15$ 3		
	$3(2x+2)=1(x^2+2x-15)$	$\frac{1}{2}$	
	$x^2 + 2x - 15 - 6x - 6 = 0$		
	$x^2 - 4x - 21 = 0$		
	$x^2 - 7x + 3x - 21 = 0$	$\frac{1}{2}$	
	x(x-7)+3(x-7)=0	, _	
	(x-7)(x+3) = 0		
	x - 7 = 0 or $x + 3 = 0$		
	x = 7 or $x = -3$	$\frac{1}{2}$	3
	Age cannot be negative. So $x = 7$		
	\therefore Present age of Rehman is 7 years.		
	OR		
	Let the speed of the train be $x \text{ km} / \text{h}$		
	Distance travelled is 360 km		
	We know that		
	distance		
	time=speed		
	\therefore time taken by the train is $\frac{360}{}$ hours.	$\frac{1}{2}$	
	$\frac{1}{x}$ induces $\frac{1}{x}$	/2	
	If the speed had been 5 km/hr more then its speed would	be	
	$(x+5)$ km/hr. In that case time taken = $\frac{360}{x+5}$ hours.	1⁄2	
	According to the given condition,		
	$\frac{360}{-1}$ - $\frac{360}{-1}$	$\frac{1}{2}$	
	$\frac{300}{x} - \frac{300}{x+5} = 1$	14	
	$\frac{360(x+5)-360x}{x(x+5)} = 1$	$\frac{1}{2}$	
	x(x+5)	, 4	
	RR (A)-(600)-13046 (MA)		

CCE RR	
--------	--

Qn. Nos.	Value Points		Marks allottee
	360x+1800-360x		unotto
	$\frac{1}{x(x+5)} = 1$		
	$1800 = x^2 + 5x$		
	$x^2 + 5x - 1800 = 0$		
	$x^2 + 45x - 40x - 1800 = 0$	1/2	
	x(x+45)-40(x+45)=0		
	(x+45)(x-40)=0		
	$\therefore x + 45 = 0$ or $x - 40 = 0$		
	x = -45 or $x = 40$	1/2	
	Speed of the train cannot be negative		3
	\therefore Speed of the train is 40 km/hr.		
27.	Evaluate :		
	$2\cos(90^{\circ} - 30^{\circ}) + \tan 45^{\circ} - \sqrt{3} \cdot \csc 60^{\circ}$		
	$\sqrt{3} \sec 30^\circ + 2\cos 60^\circ + \cot 45^\circ$		
	Ans. :		
	$2\cos(90^\circ - 30^\circ) + \tan 45^\circ - \sqrt{3} \cdot \csc 60^\circ$		
	$\sqrt{3}$. sec 30° + 2 cos 60° + cot 45°		
	$= \frac{2\sin 30^\circ + \tan 45^\circ - \sqrt{3} \cdot \operatorname{cosec} 60^\circ}{4}$	1/2	
	$= \sqrt{3} \cdot \sec 30^\circ + 2\cos 60^\circ + \cot 45^\circ$, 2	
	$2\left(\frac{1}{2}\right)+1-\sqrt{3}\left(\frac{2}{\sqrt{3}}\right)$		
		11/2	
	$\sqrt{3}\left(\frac{2}{\sqrt{3}}\right) + 2\left(\frac{1}{2}\right) + 1$		
	$= \frac{1+1-2}{2+1+1}$	1/2	
	2 + 1 + 1	, 2	
	$=\frac{0}{1}$	1/2	
	4		
	= 0		
	$\therefore \frac{2\cos(90^\circ - 30^\circ) + \tan 45^\circ - \sqrt{3} \cdot \csc 60^\circ}{\sqrt{3} \cdot \csc 60^\circ} = 0$		
	$\therefore \frac{1}{\sqrt{3} \cdot \sec 30^\circ + 2\cos 60^\circ + \cot 45^\circ} = 0$		3

RR (A)-(600)-13046 (MA)

[Turn over

Qn. Marks Value Points Nos. allotted A tower and a building are standing vertically on the same level 28. ground. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . If the tower is 50 m high, find the height of the building. А 50 m C60° 30° BDOR A cable tower and a building are standing vertically on the same level ground. From the top of the building which is 7 m high, the angle of elevation of the cable tower is 60° and the angle of depression of its foot is 45°. Find the height of the tower. (Use $\sqrt{3} = 1.73$) 60° E A 45[°] 7 m 7 m 45**°** DBAns. : Height of the tower = AB = 50 m Height of the building = CD = h = ?RR (A)-(600)-13046 (MA)

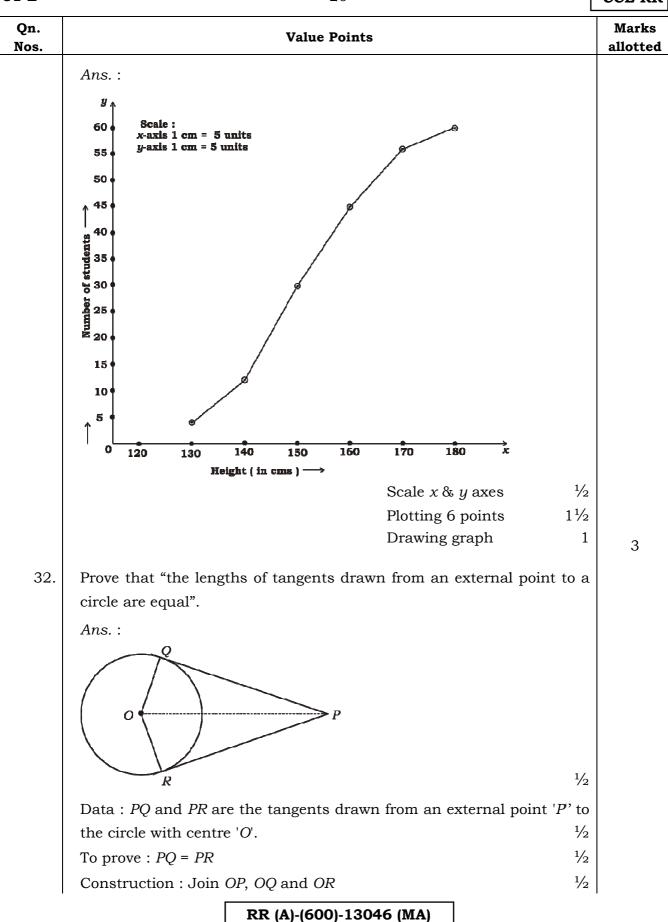
CCE RR	15		81-E
Qn. Nos.	Value Points		Marks allotted
	In $\triangle ABD$,		
	$\tan 60^\circ = \frac{AB}{BD}$	1/2	
	$\sqrt{3} = \frac{50}{BD}$	1⁄2	
	$\therefore BD = \frac{50}{\sqrt{3}} \dots $		
	In $\triangle BCD$,		
	$\tan 30^\circ = \frac{CD}{BD}$	1/2	
	$\frac{1}{\sqrt{3}} = \frac{h}{BD}$	1/2	
	$\therefore h = BD \times \frac{1}{\sqrt{3}}$	1/2	
	$= \frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \qquad \qquad \because \text{ From equation } \dots (1)$	1/2	
	$=\frac{50}{3}=16\frac{2}{3}$ metres.		3
	\therefore Height of the building is $16\frac{2}{3}$ m		
	OR		
	Height of the building is 7 m.		
	Height of the tower = $CD = CE + DE = ?$		
	AB and CD are perpendicular to the ground.		
	$\therefore AB \mid \mid CD.$		
	AB = DE = 7 m and $AE = BD$.		
	Also $\angle EAD = \angle BDA$ \therefore Alternate angles $AE \mid \mid BD$		
	$\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
	In $\triangle ABD$,		
	$\tan 45^\circ = \frac{AB}{BD}$	1/2	
	$1 = \frac{AB}{BD}$	1/2	
	$\therefore AB = BD$		
	RR (A)-(600)-13046 (MA)	[Turn over

1-6	10	CCE RR
Qn. Nos.	Value Points	Marks allotted
	$\therefore BD = 7 \text{ m} \dots $	
	In $\triangle ACE$,	
	$\tan 60^\circ = \frac{CE}{AE}$ ¹ / ₂	
	$\sqrt{3} = \frac{CE}{7}$	
	$\therefore CE = 7\sqrt{3} \qquad \qquad \frac{1}{2}$	
	\therefore Height of the tower = $CE + DE$	
	$= 7\sqrt{3} + 7$	
	$=7(\sqrt{3}+1)$ $\frac{1}{2}$	
	$=7(1 \cdot 73 + 1)$	
	= 7(2.73)	3
	= 19·11 metres	
	\therefore Height of the tower is 19.11 metres.	
29.	Find the value of 'k' if the points $P(2, 3)$, $Q(4, k)$ and	
	R(6, -3) are collinear.	
	OR	
	A circle whose centre is at $P(2, 3)$ passes through the points	
	A (4, 3) and B (x , 5). Then find the value of ' x '.	
	Ans.: P(2, 3), Q(4, k) and $R(6, -3)$	
	If these points are collinear, then the area of the triangle formed by	
	them must be '0'. $\frac{1}{2}$	
	Area of $\Delta^{le} = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ ¹ / ₂	
	$0 = \frac{1}{2} [2 (k - (-3)) + 4 (-3 - 3) + 6(3 - k)] $ ¹ / ₂	
	$0 = \frac{1}{2} \left[2 \left(k+3 \right) + 4 \left(-6 \right) + 6 \left(3-k \right) \right] $ ¹ / ₂	
	0 = 2 k + 6 - 24 + 18 - 6k ¹ / ₂	
	$-4k = 0 \qquad \frac{1}{2}$ $\therefore k = 0$	
	\therefore If the given points are collinear there $k = 0$.	3

Qn. Nos.		Va	lue Points		Marks allotted
			OR		
	PA = PB			1/2	
	$\sqrt{(4-2)^2 + 0^2} = 4$		$(5-3)^2$	1/2	
	$2^2 = (x-2)^2 + 2$	2		1	
	$(x-2)^2 = 0$			1/2	
	x = 2			1/2	3
30.	Find the mean of the	e following s	scores by direct meth	lod :	
	Class	s-interval	Frequency		
	5 —	15	1		
	15 —	- 25	3		
	25 —	- 35	5		
	35 —	- 45	4		
	45 —	- 55	2		
			OR		
	Find the median of t	he following	g scores :	1	
	Class	s-interval	Frequency	-	
	0-	20	6	-	
	20 —	- 40	9		
	40 —	- 60	10		
	60 —	- 80	8		
	80 —	- 100	7		
·		RR (A)-((600)-13046 (MA)] [Turn over

8	1-	Е
---	----	---

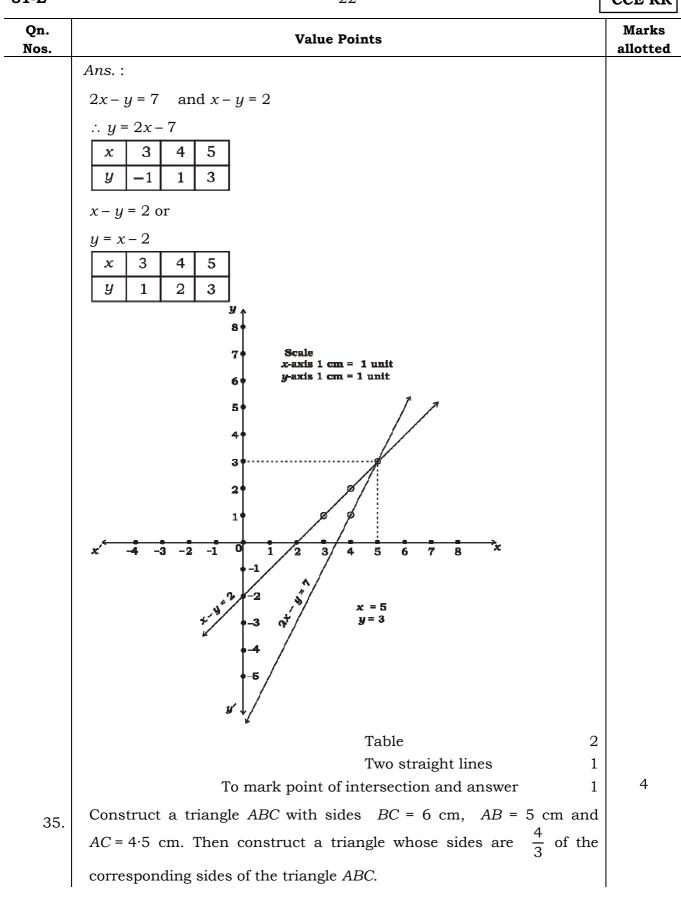
Qn.					L	Mark
os.		Va	alue Points			allotte
	Ans. :					
	C-I	f_i	x _i	$f_i x_i$		
	5-15	1	10	10		
	15-25	3	20	60		
	25-35	5	30	150		
	35-45	4	40	160		
	45-55	2	50	100		
		$\sum f_i = 15$		$\sum f_i x_i = 480$		
	Arithme	etic mean = $\frac{\sum}{\sum}$	$\frac{f_i x_i}{f}$		1/2	
			J _i 480		$1/_{2}$	
	$\frac{\overline{x} = \frac{480}{15}}{\overline{x} = 32}$					
			find $\sum f_i$		$\frac{1}{2}$ $\frac{1}{2}$	
	To find x_i To find $f_i x_i$ and					3
			$\int f_i x_i$		1/2	
			OR			
	Class-interval	Frequency	Cumulativ	e		
			frequency	<i>r</i>		
	0-20	6	6			
	20-40	9	15			
	40-60	10	25			
	60-80	8	33			
	80-100	7	40			
					1/2	
					, 4	

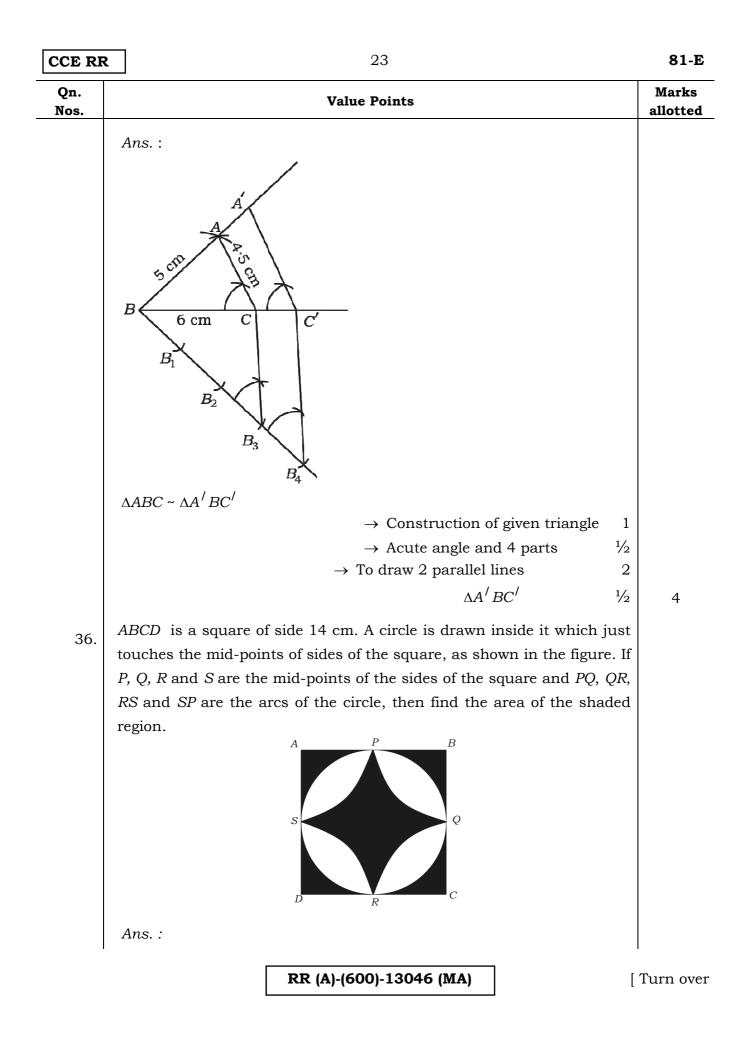

Qn. Nos.	Value Points	Marks allotted
	$n = 40, \therefore \frac{n}{2} = \frac{40}{2} = 20$	2
	20 lies in the class-interval 40-60	
	$\therefore l = 40$	
	<i>cf</i> = 15	
	f = 10	
	h = 20 ¹ /2	2
	Median = $l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$ ^{1/2}	2
	$= 40 + \left[\frac{20 - 15}{10}\right] \times 20$	2
	= 40 + (5) (2)	
	= 40 + 10	
	= 50	
	$\therefore \text{ Median} = 50 \qquad \qquad \frac{1}{2}$	3
31.	The following table gives the information of heights of 60 students o	f
	class X of a school. Draw a 'less than type' ogive for the given data :	
	Height of students Number of students	
	(in cms) (Cumulative frequency)	

(in cms)	(Cumulative frequency)
Less than 130	04
Less than 140	12
Less than 150	30
Less than 160	45
Less than 170	56
Less than 180	60

RR (A)-(600)-13046 (MA)

[Turn over




81-E

CCE RR		21	81-	
Qn. Nos.		Value Points	Mark allotte	
	Proof : In $\triangle POQ$ and $\triangle P$	POR		
	$\angle OQP = \Delta$	∠ORP ∵ Radius is perpendicular		
		to the tangent at the point of	contact	
	OQ = OR	: Radii of the same circle		
	OP = OP	··· Common side		
	$\therefore \Delta POQ \cong \Delta POR$	·· RHS criteria	1/2	
	$\therefore PQ = PR$	·: C.P.C.T.	1/2 3	
	Hence proved.			
	[Note : Any other alter	rnate correct method carries marks]		
33.	33. Draw a pair of tangents to a circle of radius 3 cm which are inclined each other at an angle of 60°.			
	Ans. :			
	Angle between the radi	i - 190° 60° - 100°	1/2	
		60° P		
		Circle	1/2	
		Radii	1/2	
		Tangents	1½ 3	
	Answer the following qu		4 × 4 = 16	
34.		e pair of linear equations by graphica		
		· · · · · · · · · · · · · · · · · · ·		
	2x - y = 7 $x - y = 2$			
I			I	

8	1	-E
---	---	----

RR (A)-(600)-13046 (MA)

Qn. Nos.	Value Points $a = 14 \text{ cm}$ Radius of circle = radius of quadrant $r = \frac{14}{2}$ $r = 7 \text{ cm}$ $r = 7 \text{ cm}$ Area of shaded region = [Area of square - Area of circle] + [Area of square - 4 × Area of quadrant]	Marks allotted	
	Radius of circle = radius of quadrant $r = \frac{14}{2}$ $r = 7 \text{ cm}$ Area of shaded region = [Area of square - Area of circle] + [Area of square - 4 × Area of		
	$r = \frac{14}{2}$ $r = 7 \text{ cm}$ Area of shaded region = [Area of square - Area of circle] + [Area of square - 4 × Area of		
	r = 7 cm Area of shaded region = [Area of square – Area of circle] + [Area of square – 4 × Area of		
	r = 7 cm Area of shaded region = [Area of square – Area of circle] + [Area of square – 4 × Area of		
	Area of shaded region = [Area of square – Area of circle] + [Area of square – 4 × Area of		
	[Area of square – Area of circle] + [Area of square – $4 \times$ Area of		
	$= \left[a^2 - \pi r^2\right] + \left[a^2 - \mathscr{A} \times \frac{1}{\mathscr{A}} \pi r^2\right] $ 1		
	$= \left\lfloor a^2 - \pi r^2 \right\rfloor + \left\lfloor a^2 - \pi r^2 \right\rfloor$ $= 2 \left\lfloor a^2 - \pi r^2 \right\rfloor$		
	$= 2 \left[14^2 - \frac{22}{\overline{\mathscr{T}}_1} \times 7 \times \overline{\mathscr{T}}^1 \right] $ ¹ / ₂		
	$= 2[196 - 154]$ $\frac{1}{2}$		
	= 2 [42]		
	$= 84 \text{ cm}^2$ $\frac{1}{2}$		
	Area of shaded region = 84 cm 2	4	
37.	Sand is filled in a cylindrical vessel of height 32 cm and radius of its		
	base is 18 cm. This sand is completely poured on the level ground to		
	form a conical shaped heap of sand. If the height of the conical heap is		
	24 cm. Find the base radius and slant height of the conical heap.		
	1 1 1 24 cm		
	OR		
	RR (A)-(600)-13046 (MA)		

CCE RR	25	81-E
Qn. Nos.	Value Points	Marks allotted
	A toy is in the form of a cone of radius 21 cm, mounted on a	
	hemisphere of same radius, as shown in the figure. The total height of	
	the toy is 49 cm. Find the surface area of the toy.	
	Ans. :	
	Height of cylinder = h_1 = 32 cm	
	Radius of cylinder = $r_1 = 18$ cm	
	Height of conical heap = h_2 = 24 cm	
	Radius of conical heap = r_2 = ?	
	Slant height of the heap = $l = ?$	
	Volume of sand in the cylinder = Volume of sand in the conical heap $\frac{1}{2}$	
	$\pi r_1^2 h_1 = \frac{1}{3} \pi r_2^2 h_2 \tag{1}$	
	$18^2 \times 32 = \frac{r_2^2 \times 24}{3}$ ¹ / ₂	
	$r_2^2 = \frac{18 \times 18 \times 32^4 \times 3^1}{24_{8_1}}$	
	$r_2^2 = 18 \times 18 \times 2 \times 2$	
	$r_2^2 = 18^2 \times 2^2$	
	$\therefore r_2 = 18 \times 2$	
	$\therefore r_2 = 36$	
	Radius of the base of conical heap is 36 cm. $\frac{1}{2}$	
	Slant height = $l = \sqrt{r_2^2 + h_2^2}$ ¹ / ₂	
	RR (A)-(600)-13046 (MA)	Turn ove

91-E	20		CCE RR
Qn. Nos.	Value Points		Marks allotted
	$=\sqrt{36^2+24^2}$		
	$= \sqrt{1296 + 576}$		
	$=\sqrt{1872}$	1/2	
	$= \sqrt{3^2 \times 4^2 \times 13}$		
	$l = 12\sqrt{13} \text{ cm}$		
	Slant height is $12\sqrt{13}$ cm		4
	OR		
	Radius of cone = Radius of hemisphere = $r = 21$ cm		
	Total height of the toy = 49 cm		
	Height of the cone = $(49 - 21)$ cm		
	= h = 28 cm	$\frac{1}{2}$	
	Slant height of the cone =		
	$l = \sqrt{r^2 + h^2}$	1/2	
	$= \sqrt{21^2 + 28^2}$		
	$= \sqrt{441 + 784}$		
	$= \sqrt{1225}$		
	$=\sqrt{25\times49}$		
	l = 35 cm	1/2	
	Total surface area of the toy =		
	Curved surface area of the cone +		
	Curved surface area of the hemisphere	1/2	
	Area = $\pi r l + 2\pi r^2$	1	
	$= \pi r (l+2r)$		
	$=\frac{22}{\pi_{1}}\times 21^{3}(35+2(21))$	1/2	
	= 66 (35 + 42)		
	= 66 (77)		
	$= 5082 \text{ cm}^2$	1/2	
	\therefore Total surface area of the toy is 5082 cm ² .		4

RR (A)-(600)-13046 (MA)

CCE RF	٤	27			81-E
Qn. Nos.		Value Points			Marks allotted
VI.	Answer the following	g question :	1 × 5	= 5	
38.		sides are in the sar	onding angles are equal, t ne ratio (or proportion)		
	Ans. :		Q F	1/2	
	Data : In ΔABC and	ΔDEF			
	$\angle A = \angle D, \ \angle B =$	$\angle E, \ \angle C = \angle F$		$\frac{1}{2}$	
	To prove : $\frac{AB}{DE} = \frac{BC}{EF} =$	$\frac{AC}{DF}$		1/2	
	Construction : Mark ' DQ = AC. Join H	-	F such that <i>DP</i> = <i>AB</i> and	1⁄2	
	Proof : In $\triangle ABC$ and \triangle	DPQ			
	AB = DP		··· Construction		
	$\angle A = \angle D$: Given		
	AC = DQ		··· Construction		
	$\therefore \Delta ABC \cong \Delta DPQ$		··· SAS congruency rule	1	
	$\therefore BC = PQ$	}			
	and $\angle ABC = \angle DPQ$	2	C.P.C.T	$\frac{1}{2}$	
	But $\angle ABC = \angle DEF$			1⁄2	
		RR (A)-(600)-130	46 (MA)	[Turn over

Qn. Nos.	v	alue Points	Marks allotted
	$\Rightarrow \angle DPQ = \angle DEF$		
	$\Rightarrow PQ \mid \mid EF$	\odot corresponding angles are equal $\frac{1}{2}$	
	$\therefore \qquad \frac{DP}{DE} = \frac{DQ}{DF} = \frac{PQ}{EF}$	\therefore corollary of <i>BPT</i>	
	$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$	$\therefore DP = AB$	
		DQ = AC	
		$PQ = BC$ $\frac{1}{2}$	
	$\therefore \Delta ABC \sim \Delta DEF$		
	Hence proved		5
	[Note : Any other method, that evaluation]	t is correct can be considered for	