CCE PR NSR & NSPR

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BENGALURU, 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ / ಜುಲೈ, 2022

S.S.L.C. EXAMINATION, JUNE / JULY, 2022

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 04. 07. 2022] ಸಂಕೇತ ಸಂಖ್ಯೆ : **81-E**

Date: 04. 07. 2022] CODE No.: **81-E**

ವಿಷಯ : ಗಣಿತ

Subject: MATHEMATICS

(ಪುನರಾವರ್ತಿತ ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ / ಎನ್.ಎಸ್.ಆರ್. & ಎನ್.ಎಸ್.ಪಿ.ಆರ್.)

(Private Repeater / NSR & NSPR)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 100

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I.		Multiple choice : $8 \times 1 = 8$	
1.		Lines represented by the pair of linear equations $x - y = 8$ and $3x - 3y = 16$ are	
		(A) intersecting lines	
		(B) parallel lines	
		(C) perpendicular lines	
		(D) coincident lines.	
		Ans.:	
	(B)	parallel lines	1

PR/NSR & NSPR-(C)-(100)-5540 (MA)

[Turn over

Qn.	Ans.	Valı	ıe Po	ints	Marks
Nos.	Key				allotted
2.		In an arithmetic progression difference is	5,	3, 1, – 1, the common	
		(A) -2	(B)	2	
		(C) – 3	(D)	5.	
	(A)	Ans.: -2			1
3.		x(x+1) = 5 is a			
		(A) linear equation	(B)	quadratic equation	
		(C) cubic equation	(D)	quadratic polynomial.	
		Ans.:			
	(B)	Quadratic equation			1
4.		$1 + \tan^2 \theta$ is equal to			
		(A) $\csc^2 \theta$	(B)	$\frac{1}{\csc^2 \theta}$	
		(C) sec ² θ	(D)	$-\sec^2\theta$	
		Ans.:			
	(C)	$\sec^2 \theta$			1
5.		Value of cot 90° is			
		$(A) \frac{1}{\sqrt{3}}$	(B)	1	
		(C) $\sqrt{3}$	(D)	0.	
		Ans.:			
	(D)	0			1
6.		Distance of the point $P(a, b)$			
		(A) $\sqrt{a^2 + b^2}$ units	(B)	$\sqrt{a^2-b^2}$ units	
		(C) $\sqrt{a+b}$ units	(D)	$\sqrt{a-b}$ units.	
		Ans.:			
	(A)	$\sqrt{a^2+b^2}$ units			1

Qn.	Ans.	Value Points	Marks
Nos. 7.	Key	In the figure, secant is $\frac{Y}{M}$	allotted
		(A) AB (B) PQ (C) XY (D) MN. Ans.:	
8.	(D)	Volume of a sphere of radius 'r' unit is (A) $\frac{2}{3} \pi r^2$ cubic units (B) $\frac{2}{3} \pi r^3$ cubic units (C) $\frac{4}{3} \pi r^3$ cubic units (D) $\frac{4}{3} \pi r^2$ cubic units. Ans.:	1
	(C)	$\frac{4}{3}\pi r^3$ cubic units	1

Qn. Nos.	Value Points	Marks allotted
II.	Answer the following questions: $8 \times 1 = 8$	
9.	How many solutions does the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ have if they are	
	inconsistent?	
	ns.:	
	No solution	1
10.	What is an Arithmetic progression ?	
	Ans.:	
	An arithmetic progression is a list of numbers in which each term is	
	obtained by adding a fixed number to the preceding term, except the	
	first term.	
	[Note : Any other correct definition carries marks.]	1
11.	Write the standard form of a quadratic equation.	
	Ans.:	
	$ax^2+bx+c=0$	1
12.	In the figure, ABC is a right angled triangle. If $\angle C = 30^{\circ}$ and	
	AB = 12 cm then find the length of AC .	
	12 cm ?	
	B 30° C	
	Ans.:	
	$\sin 30^{\circ} = \frac{AB}{AC}$	
	1 12	
	$\frac{1}{2} = \frac{1}{AC}$ $AC = 24 \text{ cm}$	1
	72	1

Qn		Value Points	Marks allotted
	13.	Write the coordinates of point P if it divides the line segment joining the points $A(x_1^{},y_1^{})$ and $B(x_2^{},y_2^{})$ internally in the ratio	
		$m_1:m_2$.	
		Ans.:	
		$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	1
	14.	Find the mode of the following scores:	
		4, 5, 5, 6, 7, 7, 6, 7, 5, 5	
		Ans. :	
		5	1
	15.	State "Basic proportionality theorem" (Thales theorem).	
		Ans.:	
		If a line is drawn parallel to one side of a triangle to intersect the other	
		two sides in distinct points, the other two sides are divided in the	
		same ratio.	
		[Note : Any other correct alternative statement may be given marks]	1
	16.	Write the formula to find the volume (V) of the frustum of a cone of height h and radii of two circular ends $\ r_1$ and $\ r_2$.	
		Ans.:	
		$V = \frac{1}{3} \pi h \left[r_1^2 + r_2^2 + r_1 r_2 \right] \text{ cubic units}$	1
III.		Answer the following questions: $18 \times 2 = 36$	
	17.	Solve the given equations by elimination method:	
		2x + 3y = 7 $2x + y = 5$	
		2x + y = 5	

Qn. Nos.	Value Points	Marks allotted
	Ans.:	
	2x + 3y = 7(1)	
	2x + y = 5(2)	
	Subtract equation (2) from equation (1)	
	2x + 3y = 7 $2x + y = 5$ ¹ / ₂	
	$2 \not k + y = 5$ (-) (-) (-)	
	$\frac{}{2y=2}$	
	$y = \frac{2}{2}$	
	-	
	y = 1 Substitute $y = 1$ in equation (2)	
	Substitute $y = 1$ in equation (2) 2x + 1 = 5 ¹ / ₂	
	2x = 5 - 1	
	2 x = 4	
	$x = \frac{4}{2}$	
	$x = 2$ $\frac{1}{2}$	
	$\therefore x=2, y=1$	2
18.	Find the 12th term of the Arithmetic progression 2, 5, 8, using formula.	
	Ans.:	
	In the AP 2, 5, 8 $a = 2$	
	a = 2 $d = 3$	
	$a_{12} = ?$	
	n = 12 $a_n = a + (n-1)d$ $\frac{1}{2}$	
	$a_n = a + (n-1)d$ $a_{12} = 2 + (12-1)(3)$ $\frac{1}{2}$	
	$a_{12} = 2 + 11 (3)$ $= 2 + 11 (3)$ ¹ / ₂	
	= 2 + 33	2
	$a_{12} = 35$	

Qn. Nos.	Value Points	Marks allotted
19.	Find the sum of arithmetic progression 7, 11, 15, to 16 terms	
	using formula.	
	OR	
	Find how many terms of the arithmetic progression 3, 6, 9, must be added to get the sum 165.	
	Ans.:	
	7 + 11 + 15 + up to 16 terms	
	$\therefore a = 7$	
	<i>d</i> = 4	
	<i>n</i> = 16	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	
	$= \frac{16}{2} [2(7) + (16 - 1)(4)]$	
	$S_{16} = 8[14+60]$ $\frac{1}{2}$	
	= 8 (74)	
	$S_{16} = 592$	2
	OR	
	In the A.P. 3, 6, 9,	
	a = 3	
	d = 3 Circum that $C = 16F$	
	Given that $S_n = 165$	
	$n = ?$ So, $165 = 3 + 6 + 9 + \dots 'n'$ terms	
	So, $165 = 3 + 6 + 9 + \dots $ 'n' terms $165 = 3 [1 + 2 + 3 + \dots $ n terms]	
	$\frac{165}{3} = \frac{n(n+1)}{2}$	
	$55 = \frac{n(n+1)}{2}$	
	$n(n+1) = 55 \times 2$	
	n(n+1) = 110	

Qn. Nos.	Value Points	Marks allotted
	$n(n+1) = 10 \times 11$	
	$\Rightarrow n = 10$ $\frac{1}{2}$	
	The sum of first 10 terms of the A.P. is 165.	2
	[Note : Any other correct method carries marks]	
20.	Find the value of the discriminant of the equation $4x^2 - 12x + 9 = 0$	
	and hence write the nature of the roots.	
	Ans.:	
	$4x^2 - 12x + 9 = 0$	
	a = 4, $b = -12$, $c = 9$	
	Discriminant = $b^2 - 4ac$	
	$D = (-12)^2 - 4(4)(9)$	
	= 144 - 144	
	D=0	
	\therefore The roots are real and equal. $\frac{1}{2}$	2
21.	Find the roots of the equation $x^2 - 3x + 1 = 0$ using quadratic formula.	
	Ans.:	
	$x^2 - 3x + 1 = 0$	
	a = 1, b = -3, c = 1	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ¹ / ₂	
	$= \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)}}{2(1)}$	
	$=\frac{3\pm\sqrt{9-4}}{2}$	
	$x = \frac{3 \pm \sqrt{5}}{2}$	
	$x = \frac{3 + \sqrt{5}}{2}$ or $\frac{3 - \sqrt{5}}{2}$	2

Qn. Nos.	Value Points	Marks allotted
22.	In the figure ABC is a right angled triangle. If $AB = 24$ cm, $BC = 7$ cm	
	and $AC = 25$ cm, then write the value of $\sin \alpha$ and $\cos \alpha$.	
	$B = \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{2$	
	Ans.:	
	$\sin \alpha = \frac{AB}{AC}$	
	$\sin\alpha = \frac{24}{25}$	
	$\cos \alpha = \frac{BC}{AC}$	
	$\cos\alpha = \frac{7}{25}$	2
23.	Find the distance between the points $P(2, 3)$ and $Q(4, 1)$ using distance formula.	
	OR	
	Find in what ratio does the point $P(-4, 6)$ divide the line segment joining the points $A(-6, 10)$ and $B(3, -8)$?	
	Ans.:	
	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
	$= \sqrt{(4-2)^2 + (1-3)^2}$	
	$= \sqrt{2^2 + (-2)^2}$ 1/2	
	$= \sqrt{4+4}$	
	$=\sqrt{8}$	
	= $2\sqrt{2}$ units	2
	OR	

Qn. Nos.	Value Points	Marks allotted
	Using section formula,	
	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	
	$(-4,6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$	
	Equation x' coordinates, we get,	
	$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$	
	$-4m_1 - 4m_2 = 3m_1 - 6m_2$	
	$6m_2 - 4m_2 = 3m_1 + 4m_1$	
	$2m_2 = 7m_1$	
	$\frac{m_1}{m_2} = \frac{2}{7}$	
	$m_1: m_2 = 2:7$	
	[Note : We get the same result by equating ' y ' coordinates. Any other correct alternate answer carries marks.]	2
24.	Draw a line segment of length 8.4 cm and divide it in the ratio 1:3 by geometric construction.	
	Ans.:	
	$A \stackrel{C}{\longrightarrow} A_1$ A_2 A_3 A_4	
	AC:CB=1:3	
	To draw line segment $AB = 8.46 \text{ m}$ $\frac{1}{2}$	
	Acute angle and 4 equal parts \frac{1}{2}	
	To draw $A_1C \mid A_4B$.	
	[Note : Any other correct alternate method carries marks]	2

Qn. Nos.	Value Points	Marks allotted
25.	The sum of two numbers is 30, and their difference is 20. Find the numbers.	
	Ans.:	
	Let the two numbers be x and y .	
	According to the condition	
	x + y = 30	
	$\underline{x-y}=20$	
	2x = 50	
	$x = \frac{50}{2}$	
	$x = 25$ $\frac{1}{2}$	
	substitute $x = 25$ in $x + y = 30$.	
	$25 + y = 30$ $\frac{1}{2}$	
	y = 30 - 25	
	$y = 5$ $\frac{1}{2}$	
	∴ The numbers are 25 and 5.	2
26.	Find the sum of first 10 positive odd integers.	
	Ans.:	
	1 + 3 + 5 + up to 10 terms.	
	a = 1	
	d = 2	
	n = 10	
	$s_n = \frac{n}{2} [2a + (n-1)d]$	
	$S_{10} = \frac{10}{2} [2(1) + (10 - 1)(2)]$ ¹ / ₂	
	= 5 [2 + (9) 2]	
	= 5 [2 + 18]	
	$S_{10} = 100$	
	[Note : Any other correct method carries marks]	2

Qn. Nos.	Value Points	Marks allotted
27.	Find the positive root of $(x-3)(x+5) = 0$.	
	Ans.:	
	(x-3)(x+5)=0	
	x - 3 = 0 or $x + 5 = 0$	
	x = 3 or x = -5	
	\therefore positive root is 3. $\frac{1}{2}$	2
28.	Show that $2 \tan 48^{\circ}$. $\tan 42^{\circ} = 2$.	
	Ans.:	
	LHS = $2 \tan 48^{\circ}$. $\tan 42^{\circ}$	
	= 2 . $\tan 48^{\circ}$. $\cot (90^{\circ} - 42^{\circ})$	
	= $2 \tan 48^{\circ} \cdot \cot 48^{\circ}$	
	$= 2 \times \tan 48^{\circ} \times \frac{1}{\tan 48^{\circ}}$	
	$= 2 = RHS$ $\frac{1}{2}$	2
29.	Name any two measures of central tendencies of statistical data.	
	Ans.:	
	Measures of central tendencies are	
	1) Mean	
	2) Median	
	3) Mode Any two	2
30.	State the conditions for the similarity of two triangles.	
	Ans.:	
	Two triangles are similar, if	
	(i) their corresponding angles are equal 1	
	(ii) their corresponding sides are in the same ratio (or proportional). 1	2

Qn. Nos.	Value Points	Marks allotted			
31.	A quadrilateral $ABCD$ is drawn to circumscribe a circle. If $DS = 4$ cm,				
	AS = 4 cm, $CQ = 3 cm$ and $BQ = 5 cm$ then find $AB + CD$.				
	R				
	3.Cm				
	S Q H				
	4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	$A \longrightarrow B$				
	Ans.:				
	$AB + CD = AP + PB + CR + RD$ $= AS + BQ + CQ + DS \qquad \text{tangents drawn from}$				
	= AS + BQ + CQ + DS : tangents drawn from an external point to 1				
	= 4 + 5 + 3 + 4 a circle are equal.				
	$AB + CD = 16 \text{ cm}$ $\frac{1}{2}$	2			
32.	Construct a chord of length 5 cm in a circle of radius 3 cm.				
	Ans.:				
	\mathcal{E}				
	5 cm				
	AB is chord.				
	То				
	Draw circle 1				
	Draw chord 1	2			
33.	Find the length of the arc of a circle of radius 21 cm if the angle				
	subtended by the arc at the centre is 60°.				

Qn. Nos.	Value Points	Marks allotted
	Ans.:	
	r = 21 cm	
	$\theta = 60^{\circ}$	
	Length of the arc = $\frac{\theta}{360^{\circ}} \times 2\pi r$	
	$= \frac{60^{1_{\circ}}}{360^{\circ}} \times 2^{1} \times \frac{22}{7_{1}} \times 21^{3^{1}}$	
	= 22 cm $\frac{1}{2}$	2
34.	Find the curved surface area of the right circular cylinder of height 10 cm and radius 7 cm.	
	Ans.:	
	CSA of cylinder = $2\pi rh$	
	$= 2 \times \frac{22}{7} \times 7 \times 10$	
	$= 44 \times 10$	
	$= 440 \text{ cm}^2$	2
IV.	Answer the following questions: $9 \times 3 = 27$	
35.	Find the arithmetic progression whose third term is 16 and its 7th term exceeds the 5th term by 12.	
	Ans.:	
	$a_3 = 16$	
	and $a_7 = a_5 + 12$ \frac{1}{2}	
	$a_3 = 16$	
	$\therefore a + 2d = 16 \dots (1)$	
	$a_7 = a_5 + 12$	
	$\alpha + 6d = \alpha + 4d + 12$ $2d = 12$	
	$d = \frac{12}{2}$	
	$d = 6 \dots (2)$	
	Substitute $d = 6$ in equation (1)	
	a + 2d = 16	
	a + 2 (6) = 16	

Qn. Nos.	Value Points	Marks allotted				
	$a + 12 = 16$ $\frac{1}{2}$					
	a = 16 - 12					
	a = 4					
	\therefore Arithmetic progression is a , $a + d$, $a + 2d$,					
	1, 10, 10,	3				
36.	The sum of the reciprocals of Rehman's age (in years), 3 years ago					
	and his age 5 years from now is $\frac{1}{3}$. Find his present age.					
	OR					
	A train travels 360 km at a uniform speed. If the speed had been					
	5 km/h more, it would have taken 1 hour less for the same journey.					
	Find the speed of the train.					
	Ans.:					
	Let the present age of Rehman be 'x' years.					
	3 years ago, his age was $(x-3)$ years.					
	After 5 years from now, his age will be ($x + 5$) years. According to the condition,					
	$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$					
	$\frac{x+5+x-3}{2} = \frac{1}{2}$					
	$x^2 + 2x - 15$ 3					
	$\frac{2x+2}{2} = \frac{1}{2}$					
	$\frac{1}{x^2+2x-15}$					
	$3(2x+2)=1(x^2+2x-15)$					
	$x^2+2x-15-6x-6=0$					
	$x^2 - 4x - 21 = 0$					
	$x^2 - 7x + 3x - 21 = 0$ $\frac{1}{2}$					
	x(x-7)+3(x-7)=0					
	(x-7)(x+3)=0					
	x - 7 = 0 or $x + 3 = 0$					
	x = 7 or x = -3					
	∴ Present age of Rehman is 7 years.					
	OR					

Qn. Nos.	Value Points	Marks allotted
	Let the speed of the train be $x \text{ km /h}$	
	Distance travelled is 360 km	
	We know that	
	$time = \frac{distance}{speed}$	
	∴ time taken by the train is $\frac{360}{x}$ hours.	
	If the speed had been 5 km/hr more then its speed would be	
	$(x+5)$ km/hr. In that case time taken = $\frac{360}{x+5}$ hours.	
	According to the given condition,	
	$\frac{360}{x} - \frac{360}{x+5} = 1$	
	$\frac{360(x+5)-360x}{x(x+5)}=1$	
	$\frac{360x + 1800 - 360x}{x(x+5)} = 1$	
	$1800 = x^2 + 5x$	
	$x^2 + 5x - 1800 = 0$	
	$x^2 + 45x - 40x - 1800 = 0$ ¹ / ₂	
	x(x+45)-40(x+45)=0	
	(x+45)(x-40)=0	
	x + 45 = 0 or $x - 40 = 0$	
	x = -45 or $x = 40$	
	∴ Speed of the train cannot be negative	
	∴ Speed of the train is 40 km/hr.	3
37.	Evaluate:	
	$\frac{2\cos(90^{\circ} - 30^{\circ}) + \tan 45^{\circ} - \sqrt{3} \cdot \csc 60^{\circ}}{\sqrt{3}\sec 30^{\circ} + 2\cos 60^{\circ} + \cot 45^{\circ}}$	

81-E	18 CCE PR/NSR			
Qn. Nos.	Value Points			
	A cable tower and a building are standing vertically on the	same level		
	ground. From the top of the building which is 7 m high, the angle of			
	elevation of the cable tower is 60° and the angle of depre	ssion of its		
	foot is 45°. Find the height of the tower. (Use $\sqrt{3} = 1.73$)			
	$ \uparrow A \downarrow 60^{\circ} \downarrow 45^{\circ} \downarrow 7 \text{ m} $ $ \uparrow B \downarrow 45^{\circ} $ $ \uparrow D \downarrow D $			
	Ans.:			
	Height of the tower = AB = 50 m			
	Height of the building = $CD = h = ?$			
	In ΔABD,			
	$\tan 60^\circ = \frac{AB}{BD}$	1/2		
	$\sqrt{3} = \frac{50}{BD}$	1/2		
	$BD = \frac{50}{\sqrt{3}} \dots \tag{1}$			
	In ΔBCD ,			
	$\tan 30^{\circ} = \frac{CD}{BD}$	1/2		
	$\frac{1}{\sqrt{3}} = \frac{h}{BD}$	1/2		
	$h = BD \times \frac{1}{\sqrt{3}}$	1/2		
	I and the second se			

Value Points		Marks allotted
$= \frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \qquad \therefore \text{ From equation (1)}$ $= \frac{50}{3} = 16\frac{2}{3} \text{ meters.}$	1/2	
\therefore Height of the building is $16\frac{2}{3}$ m		3
OR		
Height of the building is 7 cm.		
Height of the tower = $CD = CE + DE = ?$		
AB and CD are perpendicular to the ground $\therefore AB \mid \mid CD$.		
AB = DE = 7 m		
and $AE = BD$.		
In $\triangle ABD$, $\tan 45^{\circ} = \frac{AB}{BD}$	1/2	
$1 = \frac{AB}{BD}$	1/2	
$\therefore AB = BD$		
∴ $BD = 7 \text{ m}$ (1)	1/2	
In $\triangle ACE$, $\tan 60^{\circ} = \frac{CE}{AE}$ $\sqrt{3} = \frac{CE}{7}$	1/2	
$\therefore CE = 7\sqrt{3}$	1/2	
\therefore Height of the tower = $CE + DE$		
= 7√3 + 7		
$=7(\sqrt{3}+1)$	1/2	
$=7(1\cdot73+1)$		
= 7(2.73)		
= 19·11 metres		3
∴ Height of the tower is 19·11 metses.		
	$= \frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \qquad \because \text{ From equation (1)}$ $= \frac{50}{3} = 16 \frac{2}{3} \text{ meters.}$ ∴ Height of the building is $16 \frac{2}{3} \text{ m}$ OR Height of the building is 7 cm. Height of the tower = $CD = CE + DE = ?$ AB and CD are perpendicular to the ground ∴ $AB \mid \mid CD$. $AB = DE = 7 \text{ m}$ and $AE = BD$. In $\triangle ABD$, $\tan 45^\circ = \frac{AB}{BD}$ ∴ $AB = BD$ ∴ $BD = 7 \text{ m}$	= $\frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$ ∴ From equation (1) $\frac{1}{2}$ = $\frac{50}{3} = 16\frac{2}{3}$ meters. ∴ Height of the building is $16\frac{2}{3}$ m OR Height of the building is 7 cm. Height of the tower = $CD = CE + DE = ?$ AB and CD are perpendicular to the ground ∴ $AB \mid \mid CD$. $AB = DE = 7$ m and $AE = BD$. In $\triangle ABD$, $\tan 45^\circ = \frac{AB}{BD}$

39. Find the value of 'k' if the points $P((2, 3), Q(4, k))$ and $R(6, -3)$ are collinear. OR A circle whose centre is at $P(2, 3)$ passes through the points $A(4, 3)$ and $B(x, 5)$. Then find the value of 'x'. Ans.: $P(2, 3), Q(4, k)$ and $R(6, -3)$ If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Delta^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 2k + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $Class-interval Frequency 5 - 15 1 15 - 25 3 25 - 35 5 35 - 45 4 45 - 55 2 $ OR OR	Qn. Nos.	Value Points			Marks allotted
OR A circle whose centre is at $P(2, 3)$ passes through the points $A(4, 3)$ and $B(x, 5)$. Then find the value of 'x'. Ans.: $P(2, 3), \ Q(4, k)$ and $R(6, -3)$ If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Lambda^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $\sqrt{2}$ $\sqrt{2} = (x - 2)^2 + 2^2$ $\sqrt{2}$ $\sqrt{2} = (x - 2)^2 + 2^3$ $\sqrt{2}$ 40. Find the mean of the following scores by direct method: $\frac{Class \cdot interval}{5 - 15} = \frac{Frequency}{5 - 15}$ $\frac{15 - 25}{35 - 35} = \frac{3}{5}$ $\frac{25 - 35}{35 - 45} = \frac{4}{45 - 55} = \frac{4}{45 - 55}$	39.	Find the value of 'k' if the points $P((2, 3), Q(4, k))$ and			
A circle whose centre is at $P(2, 3)$ passes through the points $A(4, 3)$ and $B(x, 5)$. Then find the value of ' x '. Ans.: $P(2,3), \ Q(4,k)$ and $R(6,-3)$ If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $A^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $\sqrt{2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $Class-interval \qquad Frequency \\ 5 - 15 \qquad 1 \\ 15 - 25 \qquad 3 \\ 25 - 35 \qquad 5 \\ 35 - 45 \qquad 4 \\ 45 - 55 \qquad 2$		R(6, -3) are collinear.			
A (4, 3) and B (x, 5). Then find the value of 'x'. Ans.: $P(2,3), \ Q(4,k) \ \text{ and } R(6,-3)$ If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Delta^{le} = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2} [2 (k - (-3)) + 4 (-3 - 3) + 6(3 - k)]$ $0 = 2 (k + 3) + 4 (-6) + 6 (3 - k)$ $0 = 2 k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $Class-interval \qquad Frequency$ $5 - 15 \qquad 1$ $15 - 25 \qquad 3$ $25 - 35 \qquad 5$ $35 - 45 \qquad 4$ $45 - 55 \qquad 2$			OR		
Ans.: $P(2,3), \ Q(4,k) \ \text{ and } R(6,-3)$ If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Delta^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $\sqrt{2}$ $\sqrt{2} = (x - 2)^2 + 2^2$		A circle whose centre is at P	(2, 3) passes t	hrough the points	
If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Delta^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $Class-interval Frequency 5 - 15 1 15 - 25 3 25 - 35 5 35 - 45 4 45 - 55 2$		A (4, 3) and B (x , 5). Then find	nd the value of x .		
If these points are collinear, then the area of the triangle formed by them must be '0'. Area of $\Delta^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ y_2 $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ y_2 $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ y_2 $0 = 2k + 6 - 24 + 18 - 6k$ y_2 $-4k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ y_2 $2^2 = (x - 2)^2 + 2^2$ 1 $(x - 2)^2 = 0$ y_2 $x = 2$ 40. Find the mean of the following scores by direct method: $Class-interval $		Ans.:			
them must be '0'. Area of $\lambda^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $\frac{Class-interval}{5 - 15} = \frac{Frequency}{5 - 15}$ $\frac{15 - 25}{35 - 35} = \frac{3}{5}$ $\frac{25 - 35}{35 - 45} = \frac{4}{45 - 55} = \frac{2}{2}$		P(2,3), Q(4,k) and R(6,-	3)		
Area of $\Delta^{le} = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $0 = \frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)]$ $0 = 2(k + 3) + 4(-6) + 6(3 - k)$ $0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ 1 $(2ass-interval Frequency 5 - 15 1$ $15 - 25 3$ $25 - 35 5$ $35 - 45 4$ $45 - 55 2$		If these points are collinear, th	en the area of the	triangle formed by	
$0 = \frac{1}{2}[2 (k - (-3)) + 4 (-3 - 3) + 6(3 - k)]$ $0 = 2 (k + 3) + 4 (-6) + 6 (3 - k)$ $0 = 2 k + 6 - 24 + 18 - 6k$ $-4k = 0$ 0 0 $PA = PB$ $\sqrt{(4 - 2)^2 + 0^2} = \sqrt{(x - 2)^2 + (5 - 3)^2}$ $2^2 = (x - 2)^2 + 2^2$ $(x - 2)^2 = 0$ $x = 2$ $40. Find the mean of the following scores by direct method: \frac{Class-interval}{5 - 15} = \frac{1}{15 - 25} \frac{15 - 25}{35 - 45} = \frac{3}{4} 45 - 55 = 2$		them must be '0'.		1/2	
$0 = 2 (k+3) + 4 (-6) + 6 (3-k)$ $0 = 2 k + 6 - 24 + 18 - 6k$ $-4k = 0$ 0 0 $PA = PB$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ 1 $(x-2)^2 = 0$ 2 2 3 $40. Find the mean of the following scores by direct method: \frac{Class-interval}{5-15} = \frac{1}{15-25} \frac{1}{35-45} = \frac{1}{4} \frac{1}{45-55} = \frac{1}{2}$		Area of $\Delta^{le} = \frac{1}{2} [x_1 (y_2 - y_3) + x_2]$	$(y_3 - y_1) + x_3 (y_1 - y_2)$] 1/2	
$0 = 2k + 6 - 24 + 18 - 6k$ $-4k = 0$ 0 0 0 $PA = PB$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ $40. Find the mean of the following scores by direct method: \frac{Class-interval}{5-15} = \frac{Frequency}{5-15} \frac{15-25}{35-35} = \frac{3}{5} \frac{35-45}{45-55} = \frac{4}{45-55}$		$0 = \frac{1}{2}[2(k-(-3)) + 4(-3)]$	-3)+6(3-k)	1/2	
$-4k = 0$ $\therefore k = 0$ OR $PA = PB$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ $40. Find the mean of the following scores by direct method: \frac{Class-interval}{5-15} = \frac{Frequency}{5-15} \frac{5-15}{15-25} = \frac{1}{3} \frac{25-35}{35-45} = \frac{5}{3} \frac{35-45}{45-55} = \frac{4}{45-55}$		0 = 2(k+3)+4(-6)+6	(3-k)	1/2	
$R = 0$ OR $PA = PB$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ $40. $ Find the mean of the following scores by direct method: $Class-interval \qquad Frequency$ $5-15 \qquad 1$ $15-25 \qquad 3$ $25-35 \qquad 5$ $35-45 \qquad 4$ $45-55 \qquad 2$		0 = 2 k + 6 - 24 + 18 - 6k ¹ / ₂			
OR $PA = PB \qquad \frac{1}{2}$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2} \qquad \frac{1}{2}$ $2^2 = (x-2)^2 + 2^2 \qquad 1$ $(x-2)^2 = 0 \qquad \frac{1}{2}$ $x = 2 \qquad \frac{1}{2}$ 40. Find the mean of the following scores by direct method: $\frac{Class\text{-}interval}{5-15} \qquad \frac{Frequency}{5-15}$ $\frac{1}{15-25} \qquad 3$ $25-35 \qquad 5$ $35-45 \qquad 4$ $45-55 \qquad 2$		$-4k = 0$ $\frac{1}{2}$			
$PA = PB$ $\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ V_2 40. Find the mean of the following scores by direct method: $Class-interval \qquad Frequency$ $5-15 \qquad 1$ $15-25 \qquad 3$ $25-35 \qquad 5$ $35-45 \qquad 4$ $45-55 \qquad 2$		$\therefore k = 0$			
$\sqrt{(4-2)^2 + 0^2} = \sqrt{(x-2)^2 + (5-3)^2}$ $2^2 = (x-2)^2 + 2^2$ $(x-2)^2 = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $\frac{Class\text{-}interval}{5-15} \frac{Frequency}{5}$ $\frac{5-15}{1}$ $\frac{15-25}{35-35} \frac{3}{5}$ $\frac{35-45}{4} \frac{4}{45-55} \frac{4}{2}$			OR		
$2^{2} = (x-2)^{2} + 2^{2}$ $(x-2)^{2} = 0$ $x = 2$ 40. Find the mean of the following scores by direct method: $\frac{Class\text{-}interval}{5-15} \frac{Frequency}{5}$ $\frac{5-15}{1} \frac{1}{15-25} \frac{3}{3}$ $\frac{25-35}{35-45} \frac{5}{4}$ $\frac{45-55}{2}$		PA = PB		1/2	
$(x-2)^{2} = 0$ $x = 2$ 40. Find the mean of the following scores by direct method:		· ·			
40. Find the mean of the following scores by direct method :		$2^2 = (x-2)^2 + 2^2$			
Find the mean of the following scores by direct method :		$(x-2)^2 = 0$		1/2	
Class-interval Frequency $5-15$ 1 $15-25$ 3 $25-35$ 5 $35-45$ 4 $45-55$ 2		x = 2		1/2	3
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	40.	Find the mean of the following so	cores by direct meth	od:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Class-interval	Frequency		
25 — 35 5 35 — 45 4 45 — 55 2		5 — 15	1		
35 — 45 45 — 55 2		15 — 25	3		
45 — 55 2		25 — 35	5		
		35 — 45	4		
OR		45 — 55	2		
		OR			

Qn. Nos.	Value Points				Marks allotted	
	Find the median of the following scores:					
		Class-interval	Frequency	1		
		0 — 20	6			
		20 — 40	9			
		40 — 60	10			
		60 — 80	8			
		80 — 100	7			
	Ans.:					
				T]	
	C-I	f_i	x_i	$f_i x_i$		
	5-15	1	10	10		
	15-25	3	20	60		
	25-35	5	30	150		
	35-45	4	40	160		
	45-55	2	50	100		
		$\sum f_i = 15$		$\sum f_i x_i = 480$		
	Arithmetic mean = $\frac{\sum f_i x_i}{\sum f_i}$					
	15					
	To find $\sum J_i$ 72 To find x_i 1/2					
	To find x_i 72 To find $f_i x_i$ and					
	$\sum f_i x_i \qquad \qquad 1/2$					3
	$\sum J_i^{x_i}$ OR					

[Turn over

Qn. Nos.	Value Points			Marks allotted	
	Class-interval	Frequency	Cumulative		
			frequency		
	0-20	6	6		
	20-40	9	15		
	40-60	10	25		
	60-80	8	33		
	80-100	7	40		
				1/2	
	$n = 40, \therefore \frac{n}{2} = \frac{40}{2} = 20$				
	20 lies in the class-interval 40-60				
	∴ <i>l</i> = 40				
	<i>cf</i> = 15				
	f = 10				
	$h = 20$ $\frac{1}{2}$				
	$Median = l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$				
		$= 40 + \left[\frac{20 - 15}{10} \right]$	-]× 20	1/2	
		= 40 + (5) (2)		
		= 40 + 10			
		= 50			
	∴ Median =	50		1/2	3

Qn.	Value Points	Marks
Nos.		allotted

41. The following table gives the information of heights of 60 students of class X of a school. Draw a 'less than type' ogive for the given data:

Height of students	Number of students
(in cms)	(Cumulative frequency)
Less than 130	04
Less than 140	12
Less than 150	30
Less than 160	45
Less than 170	56
Less than 180	60

Qn. Nos.	Valu	e Points	Marks allotted
42.	Prove that "the lengths of tanger circle are equal". Ans.:	its drawn from an external point to a	
	Q	>> P 1/ ₂	
	Data: PQ and PR are the tangents drawn from an external point 'P to		
	the circle with centre 'O'.	1/2	
	To prove : $PQ = PR$	$\frac{1}{2}$	
	Construction : Join OP, OQ and O	OR ½	
	Proof : In $\triangle POQ$ and $\triangle POR$		
	$\angle OQP = \angle ORP$:: Radius is perpendicular		
	to the	ne tangent at the point of contact	
	OQ = OR :: R	adii of the same circle	
	OP = OP :: C	ommon side	
	$\therefore \Delta POQ \cong \Delta POR \qquad \qquad \because R$	HS criteria ½	
	$\therefore PQ = PR \qquad \qquad \because C$.P.C.T. ½	
	Hence proved.		
	[Note : Any other alternate meth	od carries marks]	3

Qn. Nos.	Value Points			Marks allotted
43.	Draw a pair of tangents to a circle of radius 3 cm which are inclined to			
	each other at an angle of 60°.			
	Ans.:			
	Angle between the radii = $180^{\circ} - 60^{\circ} = 120^{\circ}$		1/2	
	O O O O O O O O O O			
		Circle	1/2	
		Radii	1/2	
		Tangents	$1\frac{1}{2}$	3
V.	Answer the following questions :		4 × 4 = 16	
44.	Find the solution of the pair of linear equation	ons by graphica	al method :	
	2x - y = 7			
	x - y = 2			
	Ans.:			
	2x - y = 7 and x - y = 2			
	y = 2x - 7 $x 3 4 5$ $y -1 1 3$			
	x - y = 2 or			
	y = x - 2 $x 3 4 5$			

Qn.

Nos.

 $\triangle ABC \sim \triangle A'BC'$

 \rightarrow Construction of given triangle 1

 \rightarrow Acute angle and 4 parts $\frac{1}{2}$

 \rightarrow To draw 2 parallel lines 2

 $\Delta A'BC'$ $\frac{1}{2}$

46.

ABCD is a square of side 14 cm. A circle is drawn inside it which just touches the mid-points of sides of the square, as shown in the figure. If P, Q, R and S are the mid-points of the sides of the square, and PQ, QR, RS and SP are the arcs of the circle, then find the area of the shaded region.

27

Value Points

Ans.:

a = 14 cm

Radius of circle = radius of quadrant

Value Points	Marks allotted
Value Points $r = \frac{14}{2}$ $r = 7 \text{ cm}$ $Area of shaded region = [Area of square - Area of circle] + [Area of square - 4 \times area of quadrant] 1 = \left[a^2 - \pi r^2\right] + \left[a^2 - 4 \times \frac{1}{4} \pi r^2\right] 1 = \left[a^2 - \pi r^2\right] + \left[a^2 - \pi r^2\right] = 2\left[14^2 - \frac{22}{7} \times 7 \times 7^4\right] = 2\left[196 - 154\right] = 2\left[42\right] = 84 \text{ cm}^2 Area of shaded region = 84 cm2 Sand is filled in a cylindrical vessel of height 32 cm and radius of its base is 18 cm. This sand is completely poured on the level ground to form a conical shaped heap of sand. If the height of the conical heap is 24 cm. Find the base radius and slant height of the conical heap.$	
OR	
	$r = \frac{14}{2}$ $r = 7 \text{ cm}$ $r = 7 \text{ cm}$ Area of shaded region = $\left[\text{ Area of square - Area of circle } \right] + \left[\text{ Area of square - } 4 \times \text{ area of quadrant} \right]$ $= \left[a^2 - \pi r^2 \right] + \left[a^2 - 4 \times \frac{1}{4} \pi r^2 \right]$ $= \left[a^2 - \pi r^2 \right] + \left[a^2 - \pi r^2 \right]$ $= 2 \left[a^2 - \pi r^2 \right]$ $= 2 \left[14^2 - \frac{22}{7_1} \times 7 \times 7^4 \right]$ $= 2 \left[196 - 154 \right]$ $= 2 \left[42 \right]$ $= 84 \text{ cm}^2$ Area of shaded region = 84 cm ² Sand is filled in a cylindrical vessel of height 32 cm and radius of its base is 18 cm. This sand is completely poured on the level ground to form a conical shaped heap of sand. If the height of the conical heap is 24 cm. Find the base radius and slant height of the conical heap.

Qn.	Volus Deinte	Marks
Nos.	Value Points	allotted

A toy is in the form of a cone of radius 21 cm, mounted on a hemisphere of same radius, as shown in the figure. The total height of the toy is 49 cm. Find the surface area of the toy.

Ans.:

Height of cylinder = h_1 = 32 cm

Radius of cylinder = r_1 = 18 cm

Height of conical heap = h_2 = 24 cm

Radius of conical heap = r_2 = ?

Slant height of the heap = l = ?

Volume of sand in the cylinder = Volume of sand in the conical heap

$$t_1^2 h_1 = \frac{1}{3} t_1^2 r_2^2 h_2$$

$$18^2 \times 32 = \frac{r_2^2 \times 24}{3}$$

$$r_2^2 = \frac{18 \times 18 \times 32^4 \times 3^1}{24_{81}}$$

$$r_2^2 = 18 \times 18 \times 2 \times 2$$

$$r_2^2 = 18^2 \times 2^2$$

$$\therefore r_2 = 18 \times 2$$

$$r_2^2 = 18^2 \times 2^2$$

$$\therefore r_2 = 18 \times 2$$

$$r_2 = 36$$

Radius of the base of conical heap is 36 cm.

Qn. Nos.	Value Points		Marks allotted
	Slant height = $l = \sqrt{r_2^2 + h_2^2}$		
	$=\sqrt{36^2+24^2}$		
	$=\sqrt{1296+576}$		
	= √1872		
	$= \sqrt{3^2 \times 4^2 \times 13}$		
	$l=12\sqrt{13} \text{ cm}$		
	Slant height is $12\sqrt{13}$ cm		4
	OR		
	Radius of cone = Radius of hemisphere = r = 21 cm		
	Total height of the toy = 49 cm		
	Height of the cone = $(49 - 21)$ cm		
	= h = 28 cm	1/2	
	Slant height of the cone =		
	$l = \sqrt{r^2 + h^2}$	1/2	
	$=\sqrt{21^2+28^2}$		
	$=\sqrt{441+784}$		
	$= \sqrt{1225}$		
	$= \sqrt{25 \times 49}$		
	<i>l</i> = 35 cm	1/2	
	Total surface area of the toy =		
	Curved surface area of cone +		
	curved surface area of the hemisphere	1/2	
	$Area = \pi r l + 2\pi r^2$		
	$= \pi r (l+2r)$		
	$=\frac{22}{7_1}\times 21^3(35+2(21))$		
	= 66 (35 + 42)		
	= 66 (77)		
	= 5082 cm ²		
	∴ Total surface area of the toy is 5082 cm ² .		

Qn. Nos.	Value Point	s	Marks allotted
VI.	Answer the following question :	1 × 5	= 5
48.	Prove that "if in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar".		
	Ans.:	Q	
	B' C E Data: $\triangle ABC$ and $\triangle DEF$	$\longrightarrow F$	1/2
	$\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$		1/2
	To prove : $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$		1/2
	Construction : Mark 'P' on DE and Q on DQ = AC . Join PQ . Proof : In $\triangle ABC$ and $\triangle DPQ$	OF such that $DP = AB$ and	1/2
	AB = DP	∵ construction	
	$\angle A = \angle D$	∵ Given	
	AC = DQ	∵ construction	
	$\therefore \Delta ABC \cong \Delta DPQ$	∵ SAS congruency rule	1
	$\therefore BC = PQ$		
	and $\angle ABC = \angle DPQ$	C.P.C.T	1/2
	But $\angle ABC = \angle DEF$		1/2

Qn. Nos.		Value Points	Marks allotted
	$\Rightarrow \angle DPQ = \angle DEF$		
	$\Rightarrow PQ \mid \mid EF$	$\cdot\cdot$ corresponding angles are equal $\frac{1}{2}$	
	$\therefore \qquad \frac{DP}{DE} = \frac{DQ}{DF} = \frac{PQ}{EF}$	∵ corollary of <i>BPT</i>	
	$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$	$\therefore DP = AB$	
		DQ = AC	
		$PQ = BC$ $\frac{1}{2}$	
	∴ ΔABC ~ ΔDEF		
	Hence proved		5
	[Note : Any other method, evaluation]	that is correct can be considered for	