CCE PR NSR \& NSPR

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BENGALURU, 560003

S.S.L.C. EXAMINATION, JUNE / JULY, 2022

యూదర అతత్ృరగళ

MODEL ANSWERS

దినృంఈ : 04.07. 2022]

Date: 04.07.2022]
Code no. : 81-E

```
            ఎిజ్జయ : గగణిత
Subject : MATHEMATICS
```



```
(Private Repeater / NSR \& NSPR)
( ఇంగ్లిఱో ఱూధ్యふు / English Medium )
```

[గెరిథ్థ్ అంశగళు : 100
[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. 1.	(B)	Multiple choice : $8 \times 1=8$ Lines represented by the pair of linear equations $x-y=8$ and $3 x-3 y=16$ are (A) intersecting lines (B) parallel lines (C) perpendicular lines (D) coincident lines. Ans. : parallel lines	1

Qn. Nos.	Ans. Key	Value Points	Marks allotted
2.	(A)	In an arithmetic progression $5,3,1,-1, \ldots$. the common difference is (A) -2 (B) 2 (C) -3 (D) 5 . Ans. : -2	1
3.		$x(x+1)=5$ is a (A) linear equation (B) quadratic equation (C) cubic equation (D) quadratic polynomial. Ans. :	
4.	(B)	Quadratic equation $1+\tan ^{2} \theta$ is equal to (A) $\operatorname{cosec}^{2} \theta$ (B) $\frac{1}{\operatorname{cosec}^{2} \theta}$ (C) $\sec ^{2} \theta$ (D) $-\sec ^{2} \theta$	1
	(C)	Ans. : $\sec ^{2} \theta$	1
5.		Value of $\cot 90^{\circ}$ is (A) $\frac{1}{\sqrt{3}}$ (B) 1 (C) $\sqrt{3}$ (D) 0 . Ans. :	
	(D)	0	1
6.		Distance of the point $P(a, b)$ from the origin is (A) $\sqrt{a^{2}+b^{2}}$ units (B) $\sqrt{a^{2}-b^{2}}$ units (C) $\sqrt{a+b}$ units (D) $\sqrt{a-b}$ units. Ans. :	
	(A)	$\sqrt{a^{2}+b^{2}}$ units	1

(A) $A B$
(B) $P Q$
(C) $X Y$
(D) $M N$.

Ans. :
(D) $M N$

Volume of a sphere of radius ' r ' unit is
(A) $\frac{2}{3} \pi r^{2}$ cubic units
(B) $\frac{2}{3} \pi r^{3}$ cubic units
(C) $\frac{4}{3} \pi r^{3}$ cubic units
(D) $\frac{4}{3} \pi r^{2}$ cubic units.

Ans. :
(C) $\frac{4}{3} \pi r^{3}$ cubic units
II.
9.
10.
11.
12.

How many solutions does the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ have if they are inconsistent?
$n s .:$

No solution

In the figure, $A B C$ is a right angled triangle. If $\angle C=30^{\circ}$ and $A B=12 \mathrm{~cm}$ then find the length of $A C$.

Ans. :
$\sin 30^{\circ}=\frac{A B}{A C}$
$\frac{1}{2}=\frac{12}{A C}$
$A C=24 \mathrm{~cm}$

Qn.

-

Nos.
13.

Write the coordinates of point P if it divides the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ internally in the ratio $m_{1}: m_{2}$.

Ans. :
$P(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

Find the mode of the following scores:

$$
4,5,5,6,7,7,6,7,5,5
$$

Ans. :

5

State "Basic proportionality theorem" (Thales theorem).
Ans. :

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
[Note : Any other correct alternative statement may be given marks]
16. Write the formula to find the volume (V) of the frustum of a cone of height h and radii of two circular ends r_{1} and r_{2}.

Ans. :
$V=\frac{1}{3} \pi h\left[r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right]$ cubic units

Answer the following questions:
III.
17. Solve the given equations by elimination method:

$$
\begin{aligned}
& 2 x+3 y=7 \\
& 2 x+y=5
\end{aligned}
$$

$$
\begin{array}{r}
2 x+3 y=7 \\
2 x+y=5 \tag{2}
\end{array}
$$

\qquad

Subtract equation (2) from equation (1)

$$
\begin{gathered}
\begin{array}{c}
2 x+3 y=7 \\
2 x+y=5 \\
(-) \quad(-) \quad(-)
\end{array} \\
\hline 2 y=2 \\
y=\frac{2}{2} \\
y=1
\end{gathered}
$$

Ans. :
\qquad

$$
1 / 2
$$

$$
1 / 2
$$

Substitute $y=1$ in equation (2)

$$
\begin{aligned}
& 2 x+1=5 \\
& 2 x=5-1 \\
& 2 x=4 \\
& x=\frac{4}{2} \\
& x=2 \\
& \therefore x=2, y=1
\end{aligned}
$$

18. Find the 12 th term of the Arithmetic progression 2, 5, 8, using formula.

Ans. :
In the AP $2,5,8 \ldots \ldots$.
$a=2$
$d=3$
$a_{12}=$?
$n=12$
$a_{n}=a+(n-1) \mathrm{d}$
$a_{12}=2+(12-1)(3)$
$=2+11(3)$
$1 / 2$
$=2+33$
$a_{12}=35$

Qn. Nos.	Value Points	Marks allotted

19. Find the sum of arithmetic progression $7,11,15, \ldots .$. to 16 terms using formula.

OR
Find how many terms of the arithmetic progression 3, 6, 9, must be added to get the sum 165 .

Ans. :
$7+11+15+$ \qquad up to 16 terms
$\therefore a=7$
$d=4$
$n=16$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) \mathrm{d}] \\
&=\frac{16}{2}[2(7)+(16-1)(4)] \\
& S_{16}= 8[14+60] \\
&= 8(74) \\
& S_{16}=592
\end{aligned}
$$

OR
In the A.P. 3, 6, 9,
$a=3$
$d=3$
Given that $S_{n}=165$

$$
n=?
$$

So,

$$
\begin{aligned}
165 & =3+6+9+\ldots \ldots \ldots . n ' \text { terms } \\
165 & =3[1+2+3+\ldots \ldots . . n \text { terms }] \\
\frac{165}{3} & =\frac{n(n+1)}{2} \\
55 & =\frac{n(n+1)}{2}
\end{aligned}
$$

$$
\therefore \quad n(n+1)=55 \times 2
$$

$$
n(n+1)=110
$$

	Value Points
$n(n+1)=10 \times 11$	
$\Rightarrow n=10$	$1 / 2$

\therefore The sum of first 10 terms of the A.P. is 165.
[Note : Any other correct method carries marks]
20. Find the value of the discriminant of the equation $4 x^{2}-12 x+9=0$ and hence write the nature of the roots.

Ans. :
$4 x^{2}-12 x+9=0$
$a=4, b=-12, c=9$
Discriminant $=b^{2}-4 a c$

$$
\begin{aligned}
D & =(-12)^{2}-4(4)(9) \\
& =144-144 \\
& D=0
\end{aligned}
$$

\therefore The roots are real and equal.
-

Find the roots of the equation $x^{2}-3 x+1=0$ using quadratic formula.

Ans. :
$x^{2}-3 x+1=0$

$$
\begin{aligned}
& a=1, b=-3, c=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}
$$

$$
=\frac{3 \pm \sqrt{9-4}}{2}
$$

$$
x=\frac{3 \pm \sqrt{5}}{2}
$$

$x=\frac{3+\sqrt{5}}{2}$ or $\frac{3-\sqrt{5}}{2}$

$$
x=\frac{3+\sqrt{5}}{2} \text { or } \frac{3-\sqrt{5}}{2}
$$

Qn.

Nos.
Marks allotted
22.

In the figure $A B C$ is a right angled triangle. If $A B=24 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A C=25 \mathrm{~cm}$, then write the value of $\sin \alpha$ and $\cos \alpha$.

Ans. :
$\sin \alpha=\frac{A B}{A C}$
$\sin \alpha=\frac{24}{25}$
$\cos \alpha=\frac{B C}{A C}$
$\cos \alpha=\frac{7}{25}$
23. Find the distance between the points $P(2,3)$ and $Q(4,1)$ using distance formula.

OR
Find in what ratio does the point $P(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$? Ans. :

$$
\begin{aligned}
P Q= & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-2)^{2}+(1-3)^{2}} \\
& =\sqrt{2^{2}+(-2)^{2}} \\
& =\sqrt{4+4} \\
& =\sqrt{8} \\
& =2 \sqrt{2} \text { units }
\end{aligned}
$$

$$
1 / 2
$$

$$
1 / 2
$$

$$
1 / 2
$$

Qn.

Nos.
Value Po
Using section formula,
$P(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$(-4,6)=\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right)$
|

Equation ' x ' coordinates, we get,

$$
\begin{align*}
& -4=\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}} \\
& -4 m_{1}-4 m_{2}=3 m_{1}-6 m_{2} \\
& 6 m_{2}-4 m_{2}=3 m_{1}+4 m_{1} \\
& 2 m_{2}=7 m_{1} \\
& \frac{m_{1}}{m_{2}}=\frac{2}{7} \\
& \therefore \quad m_{1}: m_{2}=2: 7
\end{align*}
$$

$-4,6)=\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right)$
«

$$
y-1+2,-100
$$

$$
1 / 2
$$

$$
1 / 2
$$

[Note : We get the same result by equating ' y ' coordinates. Any other correct alternate answer carries marks.]
24. Draw a line segment of length 8.4 cm and divide it in the ratio $1: 3$ by geometric construction.

Ans. :

$A C: C B=1: 3$
To draw line segment $A B=8.46 \mathrm{~m}$

$$
1 / 2
$$

Acute angle and 4 equal parts 1 1/2
To draw $A_{1} C| | A_{4} B$.
[Note : Any other correct alternate method carries marks]

Marks allotted
25. The sum of two numbers is 30 , and their difference is 20 . Find the numbers.

Ans. :
Let the two numbers be x and y.
According to the condition

$$
\begin{aligned}
& x+y=30 \\
& x-y y=20 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=50 \\
& x=\frac{50}{2} \\
& x=25
\end{aligned}
$$

substitute $x=25$ in $x+y=30$.

$$
\begin{aligned}
& 25+y=30 \\
& y=30-25 \\
& y=5
\end{aligned}
$$

\therefore The numbers are 25 and 5 .

Qn. Nos.	Value Points	Marks allotted
27.	Find the positive root of $(x-3)(x+5)=0$.	
	Ans. :	
	$(x-3)(x+5)=0$	
	$x-3=0$ or $x+5=0 \quad 1$	
	$x=3$ or $x=-5 \quad 1 / 2$	
	\therefore positive root is 3 . $1 / 2$	2
28.	Show that $2 \tan 48^{\circ} \cdot \tan 42^{\circ}=2$.	
	Ans. :	
	LHS $=2 \tan 48^{\circ} \cdot \tan 42^{\circ} \quad 1 / 2$	
	$=2 \cdot \tan 48^{\circ} \cdot \cot \left(90^{\circ}-42^{\circ}\right) \quad 1 / 2$	
	$=2 \tan 48^{\circ} \cdot \cot 48^{\circ} \quad 1 / 2$	
	$=2 \times \tan 148^{\circ} \times \frac{1}{\tan 48^{\circ}}$	
	$=2$ RHS $\quad 1 / 2$	2
29.	Name any two measures of central tendencies of statistical data.	
	Ans. :	
	Measures of central tendencies are	
	1) Mean	
	2) Median	
	3) Mode Any two	2
30.	State the conditions for the similarity of two triangles.	
	Ans. :	
	Two triangles are similar, if	
	(i) their corresponding angles are equal	
	(ii) their corresponding sides are in the same ratio (or proportional). 1	2

Qn.	Value Points	Marks allotted

31.

A quadrilateral $A B C D$ is drawn to circumscribe a circle. If $D S=4 \mathrm{~cm}$, $A S=4 \mathrm{~cm}, C Q=3 \mathrm{~cm}$ and $B Q=5 \mathrm{~cm}$ then find $A B+C D$.

Ans. :

$$
\begin{array}{rlr}
A B+C D & =A P+P B+C R+R D & \\
1 / 2 \\
& =A S+B Q+C Q+D S & \because \quad \text { tangents drawn from }
\end{array}
$$

$A B+C D=16 \mathrm{~cm}$
Construct a chord of length 5 cm in a circle of radius 3 cm .
Ans. :

$A B$ is chord.

To

Draw circle 1
Draw chord

2

2
allotted
32.

Find the length of the arc of a circle of radius 21 cm if the angle subtended by the arc at the centre is 60°.

Qn. Nos.	Value Points	Marks allotted
	Ans. : $\begin{aligned} & r=21 \mathrm{~cm} \\ & \theta=60^{\circ} \end{aligned}$ $\begin{aligned} \text { Length of the arc } & =\frac{\theta}{360^{\circ}} \times 2 \pi r \\ & =\frac{60^{1 \circ}}{360^{\circ} / 62_{1}} \times 2^{1} \times \frac{22}{7_{1}} \times 21^{x^{1}} \\ & =22 \mathrm{~cm} \end{aligned}$	2
34.	Find the curved surface area of the right circular cylinder of height 10 cm and radius 7 cm . Ans. : $\begin{aligned} \text { CSA of cylinder } & =2 \pi r h \\ & =2 \times \frac{22}{7} \times \not 7 \times 10 \\ & =44 \times 10 \\ & =440 \mathrm{~cm}^{2} \end{aligned}$	2
IV.	Answer the following questions : $9 \times 3=27$	
35.	Find the arithmetic progression whose third term is 16 and its 7 th term exceeds the 5th term by 12. Ans. : $\begin{align*} & a_{3}=16 \\ & \text { and } a_{7}=a_{5}+12 \\ & a_{3}=16 \\ & \therefore \quad a+2 d=16 \ldots \ldots \ldots \tag{1}\\ & a_{7}=a_{5}+12 \\ & \not d+6 d=\not d+4 d+12 \\ & 2 d=12 \\ & d=\frac{12}{2} \\ & \quad d=6 \ldots \ldots \ldots \ldots . . \tag{2} \end{align*}$ Substitute $d=6$ in equation (1) $\begin{aligned} & a+2 d=16 \\ & a+2(6)=16 \end{aligned}$	

Qn.

Nos.

	Value Points
$a+12=16$	
$a=16-12$	
$a=4$	

\therefore Arithmetic progression is $a, a+d, a+2 d$,

$$
4,10,16
$$

\qquad
\qquad

The sum of the reciprocals of Rehman's age (in years), 3 years ago and his age 5 years from now is $\frac{1}{3}$. Find his present age.

OR
A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.

Ans. :

Let the present age of Rehman be ' x ' years.
3 years ago, his age was $(x-3)$ years.
After 5 years from now, his age will be $(x+5)$ years.

According to the condition,
$\frac{1}{x-3}+\frac{1}{x+5}=\frac{1}{3}$
$\frac{x+5+x-3}{x^{2}+2 x-15}=\frac{1}{3}$
$\frac{2 x+2}{x^{2}+2 x-15}=\frac{1}{3}$
$3(2 x+2)=1\left(x^{2}+2 x-15\right)$
$x^{2}+2 x-15-6 x-6=0$
$x^{2}-4 x-21=0$
$x^{2}-7 x+3 x-21=0$
$x(x-7)+3(x-7)=0$
$(x-7)(x+3)=0$
$x-7=0$ or $x+3=0$
$x=7$ or $x=-3$
\therefore Present age of Rehman is 7 years.
OR

Qn.

Nos.
Let the speed of the train
Distance travelled is 360
We know that
time $=\frac{\text { distance }}{\text { speed }}$
\therefore time taken by the train is $\frac{360}{x}$ hours.
If the speed had been $5 \mathrm{~km} / \mathrm{hr}$ more then its speed would be $(x+5) \mathrm{km} / \mathrm{hr}$. In that case time taken $=\frac{360}{x+5}$ hours.

According to the given condition,

$$
\begin{array}{ll}
\frac{360}{x}-\frac{360}{x+5}=1 & 1 / 2 \\
\frac{360(x+5)-360 x}{x(x+5)}=1 & 1 / 2 \\
\frac{360 x+1800-360 x}{x(x+5)}=1 & \\
1800=x^{2}+5 x \\
x^{2}+5 x-1800=0 \\
x^{2}+45 x-40 x-1800=0 \\
x(x+45)-40(x+45)=0 & 1 / 2 \\
(x+45)(x-40)=0 & \\
\therefore x+45=0 \quad \text { or } \quad x-40=0 & \\
x=-45 \text { or } x=40 & 1 / 2
\end{array}
$$

\therefore Speed of the train cannot be negative
\therefore Speed of the train is $40 \mathrm{~km} / \mathrm{hr}$.
Evaluate :

$$
\frac{2 \cos \left(90^{\circ}-30^{\circ}\right)+\tan 45^{\circ}-\sqrt{3} \cdot \operatorname{cosec} 60^{\circ}}{\sqrt{3} \sec 30^{\circ}+2 \cos 60^{\circ}+\cot 45^{\circ}}
$$

Value Point
Ans. :
$\frac{2 \cos \left(90^{\circ}-30^{\circ}\right)+\tan 45^{\circ}-\sqrt{3} \cdot \operatorname{cosec} 60^{\circ}}{\sqrt{3} \cdot \sec 30^{\circ}+2 \cos 60^{\circ}+\cot 45^{\circ}}$

$$
\begin{aligned}
& \frac{2 \cos \left(90^{\circ}-30^{\circ}\right)+\tan 45^{\circ}-\sqrt{3} \cdot \operatorname{cosec} 60^{\circ}}{\sqrt{3} \cdot \sec 30^{\circ}+2 \cos 60^{\circ}+\cot 45^{\circ}} \\
& =\frac{2 \sin 30^{\circ}+\tan 45^{\circ}-\sqrt{3} \cdot \operatorname{cosec} 60^{\circ}}{\sqrt{3} \cdot \sec 30^{\circ}+2 \cos 60^{\circ}+\cot 45^{\circ}}
\end{aligned}
$$

Ans. :

$$
1 / 2
$$

$$
=\frac{2\left(\frac{1}{2}\right)+1-\sqrt{3}\left(\frac{2}{\sqrt{3}}\right)}{\sqrt{3}\left(\frac{2}{\sqrt{3}}\right)+2\left(\frac{1}{2}\right)+1}
$$

$$
=\frac{1+1-2}{2+1+1}
$$

$$
1 / 2
$$

38. A tower and a building are standing vertically on the same level ground. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

$$
\begin{aligned}
& =\frac{0}{4} \\
& =0 \\
\therefore \quad & \frac{2 \cos \left(90^{\circ}-30^{\circ}\right)+\tan 45^{\circ}-\sqrt{3} \cdot \operatorname{cosec} 60^{\circ}}{\sqrt{3} \cdot \sec 30^{\circ}+2 \cos 60^{\circ}+\cot 45^{\circ}}=0
\end{aligned}
$$

OR

Qn.

Nos.
Marks allotted
A cable tower and a building are standing vertically on the same level ground. From the top of the building which is 7 m high, the angle of elevation of the cable tower is 60° and the angle of depression of its foot is 45°. Find the height of the tower. (Use $\sqrt{3}=1.73$)

Ans. :
Height of the tower $=A B=50 \mathrm{~m}$
Height of the building $=C D=h=$?
In $\triangle A B D$,

$$
\begin{align*}
& \tan 60^{\circ}=\frac{A B}{B D} \\
& \sqrt{3}=\frac{50}{B D} \\
& B D=\frac{50}{\sqrt{3}} \ldots \ldots \tag{1}
\end{align*}
$$

In $\triangle B C D$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{C D}{B D} \\
& \frac{1}{\sqrt{3}}=\frac{h}{B D} \\
& h=B D \times \frac{1}{\sqrt{3}}
\end{aligned}
$$

$1 / 2$

Qn.

Nos.

	Value \mathbf{P}
	$=\frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$
	$=\frac{50}{3}=16 \frac{2}{3}$ meters.
\therefore Height of the building is $16 \frac{2}{3} \mathrm{~m}$	

> OR

Height of the building is 7 cm .
Height of the tower $=C D=C E+D E=$?
$A B$ and $C D$ are perpendicular to the ground $\therefore A B \| C D$.
$A B=D E=7 \mathrm{~m}$
and $A E=B D$.
In $\triangle A B D$,
$\tan 45^{\circ}=\frac{A B}{B D}$
$1 / 2$
$1=\frac{A B}{B D}$
$1 / 2$
$\therefore A B=B D$
$\therefore B D=7 \mathrm{~m}$
(1)

In $\triangle A C E$,
$\tan 60^{\circ}=\frac{C E}{A E}$
$\sqrt{3}=\frac{C E}{7}$
$\therefore C E=7 \sqrt{3}$
\therefore Height of the tower $=C E+D E$

$$
\begin{aligned}
& =7 \sqrt{3}+7 \\
& =7(\sqrt{3}+1) \\
& =7(1 \cdot 73+1) \\
& =7(2 \cdot 73) \\
& =19 \cdot 11 \text { metres }
\end{aligned}
$$

Marks allotted

3
I

\therefore Height of the tower is $19 \cdot 11$ metses.

Marks
Nos. allotted
39.

Find the value of ' k ' if the points $P((2,3), Q(4, k)$ and $R(6,-3)$ are collinear.

OR

A circle whose centre is at $P(2,3)$ passes through the points $A(4,3)$ and $B(x, 5)$. Then find the value of ' x '.
Ans. :
$P(2,3), \quad Q(4, k)$ and $R(6,-3)$
If these points are collinear, then the area of the triangle formed by them must be ' 0 '.

$$
\text { Area of } \Delta^{l e}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \quad 1 / 2
$$

$0=\frac{1}{2}[2(k-(-3))+4(-3-3)+6(3-k)]$

$$
0=2(k+3)+4(-6)+6(3-k)
$$

$0=2 k+6-24+18-6 k$

$$
-4 k=0
$$

$$
1 / 2
$$

$\therefore k=0$
40. Find the mean of the following scores by direct method:

Class-interval	Frequency
$5-15$	1
$15-25$	3
$25-35$	5
$35-45$	4
$45-55$	2

OR

Qn. Nos.	Value Points		
	Find the median of the following scores:		
		Class-interval	Frequency
		$0-20$	6
		20-40	9
		40-60	10
		$60-80$	8
		80-100	7

Ans. :

C-I	f_{i}	x_{i}	$f_{i} x_{i}$
$5-15$	1	10	10
$15-25$	3	20	60
$25-35$	5	30	150
$35-45$	4	40	160
$45-55$	2	50	100
	$\sum f_{i}=15$		$\sum f_{i} x_{i}=480$

$$
\begin{aligned}
\text { Arithmetic mean }= & \frac{\sum f_{i} x_{i}}{\sum f_{i}} \\
& \bar{x}=\frac{480}{15} \\
& \bar{x}=32 \\
& \text { To find } \sum f_{i} \\
& \text { To find } x_{i} \\
& \text { To find } f_{i} x_{i} \text { and } \\
& \sum f_{i} x_{i}
\end{aligned}
$$

OR

Qn. Nos.	Value Points		
	Class-interval Frequency Cumulative frequency $0-20$ 6 $20-40$ 9 6 $40-60$ 10 15 $60-80$ 8 25 $80-100$ 7	33	

$n=40, \quad \therefore \frac{n}{2}=\frac{40}{2}=20$
20 lies in the class-interval 40-60
$\therefore l=40$

$$
\begin{aligned}
& c f=15 \\
& f=10 \\
& h=20 \\
& \begin{aligned}
\text { Median } & =l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h \\
& =40+\left[\frac{20-15}{10}\right] \times 20 \\
& =40+(5)(2) \\
& =40+10 \\
& =50
\end{aligned}
\end{aligned}
$$

$$
\therefore \quad \text { Median }=50
$$

Qn. Nos.	Value Points	
41.	The following table gives the information of heights of 60 class X of a school. Draw a 'less than type' ogive for the giv	
	Height of students (in cms)	Number of students (Cumulative frequency)
	Less than 130	04
	Less than 140	12
	Less than 150	30
	Less than 160	45
	Less than 170	56
	Less than 180	60

Ans. :

Scale x $\&$ y axis	$1 / 2$
Plotting 6 points	$11 / 2$
Drawing graph	1

$1 / 2$

Data: $P Q$ and $P R$ are the tangents drawn from an external point ' P to the circle with centre ' O '.

To prove : $P Q=P R$

Construction : Join $O P, O Q$ and $O R$

Proof: In $\triangle P O Q$ and $\triangle P O R$

$$
\angle O Q P=\angle O R P \because \text { Radius is perpendicular }
$$ to the tangent at the point of contact

$O Q=O R \quad \because$ Radii of the same circle
$O P=O P \quad \because$ Common side
$\therefore \triangle P O Q \cong \triangle P O R \quad \because$ RHS criteria $\quad 1 / 2$
$\therefore P Q=P R \quad \because$ C.P.C.T. $1 / 2$

Hence proved.
[Note : Any other alternate method carries marks]

		Marks allotted

Qn. Nos.	Value Points	Marks allotted
As.	 Table Two straight lines To mark point of intersection and answer Construct a triangle $A B C$ with sides $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $A C=4.5 \mathrm{~cm}$. Then construct a triangle whose sides are $\frac{4}{3}$ of the corresponding sides of the triangle $A B C$. Ans. :	4

Qn.
Nos. Value Points
$A B C D$ is a square of side 14 cm . A circle is drawn inside it which just touches the mid-points of sides of the square, as shown in the figure. If P, Q, R and S are the mid-points of the sides of the square, and $P Q$, $Q R, R S$ and $S P$ are the arcs of the circle, then find the area of the shaded region.

Ans. :
$a=14 \mathrm{~cm}$
Radius of circle $=$ radius of quadrant

Qn. Nos.	Value Points	Marks allotted
	$\begin{aligned} & r=\frac{14}{2} \\ & r=7 \mathrm{~cm} \end{aligned}$ Area of shaded region = [Area of square - Area of circle] + [Area of square $-4 \times$ area of quadrant] $\begin{aligned} & =\left[a^{2}-\pi r^{2}\right]+\left[a^{2}-4 \times \frac{1}{4} \pi r^{2}\right] \\ & =\left\lfloor a^{2}-\pi r^{2}\right\rfloor+\left\lfloor a^{2}-\pi r^{2}\right\rfloor \\ & =2\left\lfloor a^{2}-\pi r^{2}\right\rfloor \\ & =2\left[14^{2}-\frac{22}{T_{1}} \times 7 \times \pi^{1}\right] \\ & =2[196-154] \\ & =2[42] \\ & =84 \mathrm{~cm}^{2} \end{aligned}$ Area of shaded region $=84 \mathrm{~cm}^{2}$	4

47. Sand is filled in a cylindrical vessel of height 32 cm and radius of its base is 18 cm . This sand is completely poured on the level ground to form a conical shaped heap of sand. If the height of the conical heap is 24 cm . Find the base radius and slant height of the conical heap.

Qn. Nos.	Value Points
	A toy is in the form of a cone of radius 21 hemisphere of same radius, as shown in the figur the toy is 49 cm. Find the surface area of the toy.

Ans. :

Height of cylinder $=h_{1}=32 \mathrm{~cm}$
Radius of cylinder $=r_{1}=18 \mathrm{~cm}$
Height of conical heap $=h_{2}=24 \mathrm{~cm}$
Radius of conical heap $=r_{2}=$?
Slant height of the heap $=l=$?
Volume of sand in the cylinder = Volume of sand in the conical heap
$t r_{1}^{2} h_{1}=\frac{1}{3} t r_{2}^{2} h_{2}$
$18^{2} \times 32=\frac{r_{2}^{2} \times 24}{3}$
$r_{2}^{2}=\frac{18 \times 18 \times 32^{4} \times 3^{1}}{24 \delta_{1}}$
$r_{2}^{2}=18 \times 18 \times 2 \times 2$
$r_{2}^{2}=18^{2} \times 2^{2}$
$\therefore r_{2}=18 \times 2$
$\therefore r_{2}=36$
Radius of the base of conical heap is 36 cm .

Marks allotted

A toy is in the form of a cone of radius 21 cm , mounted on a . The total height of

Qn. Nos.	Value Points	Marks allotted
Slant height $=l=\sqrt{r_{2}^{2}+h_{2}^{2}}$		
	$=\sqrt{36^{2}+24^{2}}$	
	$=\sqrt{1296+576}$	
	$=\sqrt{1872}$	
	$=\sqrt{3^{2} \times 4^{2} \times 13}$	
$l=12 \sqrt{13} \mathrm{~cm}$		
Slant height is $12 \sqrt{13} \mathrm{~cm}$		

Radius of cone $=$ Radius of hemisphere $=r=21 \mathrm{~cm}$
Total height of the toy $=49 \mathrm{~cm}$
Height of the cone $=(49-21) \mathrm{cm}$

$$
=h=28 \mathrm{~cm}
$$

$1 / 2$
Slant height of the cone $=$

$$
\begin{aligned}
& l=\sqrt{r^{2}+h^{2}} \\
& =\sqrt{21^{2}+28^{2}} \\
& =\sqrt{441+784} \\
& =\sqrt{1225} \\
& =\sqrt{25 \times 49} \\
& l=35 \mathrm{~cm}
\end{aligned}
$$

Total surface area of the toy $=$
Curved surface area of cone + curved surface area of the hemisphere

$$
\begin{aligned}
\text { Area } & =\pi r l+2 \pi r^{2} \\
& =\pi r(l+2 r) \\
& =\frac{22}{\pi_{1}} \times 21^{3}(35+2(21)) \\
& =66(35+42) \\
& =66(77) \\
& =5082 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Total surface area of the toy is $5082 \mathrm{~cm}^{2}$.

Qn.

Nos.

Value Points	Marks allotted

VI.

Answer the following question :
48. Prove that "if in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar".

Ans. :

Data: $\triangle A B C$ and $\triangle D E F$

$$
\angle A=\angle D, \angle B=\angle E, \quad \angle C=\angle F
$$

To prove : $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Construction : Mark ' P on $D E$ and Q on $D F$ such that $D P=A B$ and

$$
D Q=A C . \text { Join } P Q
$$

Proof : In $\triangle A B C$ and $\triangle D P Q$
$A B=D P$
\because construction
$\angle A=\angle D$
\because Given

$$
A C=D Q
$$

\because construction
$\therefore \triangle A B C \cong \triangle D P Q$
\because SAS congruency rule
$\therefore B C=P Q$
and $\angle A B C=\angle D P Q$
C.P.C.T

But $\angle A B C=\angle D E F$

Qn. Nos.	Value Points	Marks allotted
		5

